

eDIANA

Embedded Systems for Energy Efficient Buildings

Grant agreement no.: 100012

Dissemination level

X PU = Public
 PP = Restricted to other programme participants (including the JU)
 RE = Restricted to a group specified by the consortium (including the JU)
 CO = Confidential, only for members of the consortium (including the JU)

D2.1-A Model Driven Engineering
methodology for architecture realisation

Author(s): Claudio Parrella ST
Contributor(s): ESI
 MU
 ED
 UNIBO
 ATOS
 LABEIN

Issue Date 29 May 2009 (m04)
Deliverable Number D2.1-A
WP Number WP2: Design of architecture and middleware for effective

system composability
Status Delivered

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 2

Document history

V Date Author Description

0 2009-03-10 ESI ToC

0.1 2009-04-03 ESI ToC

0.2 2009-05-08 ESI First version of sections 2, 3, 5 & 6

0.3 2009-05-15 ST

ATOS

MU

First version of Introduction and Conclusion;
updated tables 3.2.3 and 6.3

First version of section 4.1; updated table 6.1;

First version of section 5.7; updated tables 6.1,
6.2, 6.3;

0.4 2009-05.20 ATOS Modified Sect.4.1.3.7

0.5 2009-05-24 ED Moved section 4.1 in 4.2 and added a new version
of the section 4.1

0.6 2009-05-28 MU Eliminate comments and add new text related to a
new phase in the process and some other changes

0.7 2009-05-29 ESI Updated eDIANA process figure (Figure 3-1)
according to the partners’ comments.

0.8 2009-05-29 ATOS Moved section 4.1.3.x embedded into a table in
section 6.1

0.9 2009-05-29 MU Table format changed in section 5.7

1.0 2009-05-29 ST Final version, comments removed

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 3

Disclaimer

The information in this document is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

The document reflects only the author’s views and the Community is not liable for
any use that may be made of the information contained therein.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 4

Summary

The “Model Driven Engineering methodology for architecture realisation” is a public
document delivered in the context of WP2, Task 2.1. Model Driven Architecture for
Components Engineering with regard to methods and techniques that will be
adopted and instantiated to the domain of eDIANA in order to ensure composability
during system realisation

This document is about the methodology that will support eDIANA platform
developers to design, develop and deploy them to scenarios defined in the context of
the project.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 5

Contents

SUMMARY...4

ABBREVIATIONS ..7

1. INTRODUCTION ...8

2. PRINCIPLES OF THE EDIANA METHODOLOGY ..9

2.1 THE PRINCIPLES OF THE EDIANA PLATFORM.. 9
2.2 RELATION WITH GENESYS ..11

3. THE PROCESS MODEL ... 13

3.1 OVERVIEW OF THE PROCESS MODEL ..13
3.2 EDIANA PROCESS PHASES ...15
3.2.1 Process Configuration phase .. 15
3.2.2 System Requirements and V&V Scenarios Specification phase 16
3.2.3 Application Architecture Design phase .. 16
3.2.4 Platform Architecture Design phase ..17
3.2.5 System Allocation phase.. 18
3.2.6 Early Verification & Validation phase... 18
3.2.7 Realization & Deployment phase ..19

3.3 ARTEFACTS ...20
3.3.1 Documents and Models ... 20
3.3.2 Repositories ... 23

4. SYSTEM REQUIREMENTS SPECIFICATION... 24

4.1 OVERVIEW ON THE PROBLEMS ..24
4.2 REQUIREMENTS ENGINEERING ..25
4.2.1 Requirements development and Requirements management 25
4.2.2 Requirement traceability.. 27
4.2.3 Requirements management tools ... 27

5. ARCHITECTURE DESIGN ... 29

5.1 MODELLING LANGUAGES...29
5.2 EDIANA ARCHITECTURAL ELEMENTS ...30
5.3 TRANSFORMATION FRAMEWORK..32
5.4 PLATFORM ARCHITECTURE DESIGN ...32
5.4.1 Structural view ... 33

5.4.1.1 MARTE GRM concepts for execution platform modelling 34
5.4.1.2 Modelling processing units and tasks... 36
5.4.1.3 Modelling shared resources... 37
5.4.1.4 Modelling variables and shared memory .. 38
5.4.1.5 Modelling communication resources .. 38
5.4.1.6 Modelling platform black-boxes... 39
5.4.1.7 Modelling timing resources ... 40
5.4.1.8 Further refining platform structural models.. 40

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 6

5.4.2 Behavioural view .. 40
5.5 APPLICATION ARCHITECTURE DESIGN ..43
5.5.1 Structural view ... 44
5.5.2 Syntactical view.. 46
5.5.3 Behavirour view.. 49
5.5.4 Semantic view .. 51

5.6 SYSTEM ALLOCATION...52
5.7 METHOD SELECTION AND ADAPTATION (PROCESS CONFIGURATION)54
5.7.1 . Analyze models usage ... 56
5.7.2 Determine modelling purpose .. 57
5.7.3 Analyze system features.. 57

6. TOOLING SUPPORT AND INTEGRATION .. 59

6.1 REQUIREMENTS MANAGEMENT TOOLS...59
6.2 MODELLING LANGUAGES AND TOOLS ..62
6.3 MODEL TRANSFORMATION TOOLS..63
6.4 EARLY VERIFICATION & VALIDATION TOOLS ..64

CONCLUSIONS .. 66

ACKNOWLEDGEMENTS.. 67

REFERENCES ... 67

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 7

Abbreviations

eDIANA Embedded Systems for Energy Efficient Buildings

MDE Model-Driven Engineering

GENESYS GEneric Embedded SYStems platform

LIF Linking InterFace

PIM Platform Independent Model

PSM Platform Specific Model

V&V Verification and Validation

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 8

1. Introduction

The target of this document is to define a Model Driven Engineering practices and
Architecture Variability techniques to be applied to the eDIANA Reference
Architecture development.

Model Driven Architecture and Engineering methods and techniques will be adopted
and instantiated to the domain of eDIANA in order to ensure composability during
system realisation. The design and the realisation of the software and hardware
elements within the eDIANA architecture will follow model driven and component
based design methods and tools, allowing the design and development of
collaborating elements in a concurrent fashion, empowering contract-based
engineering and reasoning, allowing the replacement, suppression, or inhibition of
platform elements while ensuring correct behaviour (functional and non-functional),
in line with the robustness and diagnosis challenges for the envisioned eDIANA
architecture.

The target of this document is to describe how the methodology proposed in the
GENESYS [2] European project could be applied to the eDIANA platform. The current
maturity of GENESYS methodology is not fully applicable for the design of complex
platform as eDIANA, where different devices, protocols and multi-processor System
on Chip are integrated. When applicable, in the next steps of the eDIANA project,
this methodology will be the guideline for the hardware and software design. While
the state of art will be apply for overcoming the specific methodology limitation.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 9

2. Principles of the eDIANA Methodology

This section will go over the main principles of the eDIANA Model-Driven Engineering
(MDE) methodology. The methodology will support eDIANA application developers to
design, develop and deploy them to scenarios defined in the context of the project.
Therefore, the eDIANA methodology must be tightly coupled with the definitions of
the eDIANA architecture, with the devices that will be used in it and also with the
scenarios in which the applications will be deployed.

The eDIANA platform is deployed on top of a set of embedded devices which will
control energy consumption in apartments and buildings. Therefore, the
development targets of the platform are twofold:

• On the one hand, the concrete embedded devices that will be used for
establishing the eDIANA environment must be developed.

• On the other hand, the eDIANA Cell and MacroCell applications, which will be
built on top of these devices, must be specified, designed and deployed.

Despite the fact that these two targets focus on different integration levels, it would
be highly desirable that the two of them were integrated in the same architectural
paradigm. Other research projects have also addressed the industrial need of a cross
domain multi-level embedded system architecture. The GENESYS project [2] is an
example of such an initiative. In this section we will also discuss the similarities
between the eDIANA platform needs and the generic platform proposed by GENESYS
in order to locate the possible synergies and profit from the results of that project.

2.1 The Principles of the eDIANA Platform

As it has already been stated previously, this document presents an MDE
methodology to be applied for the development and deployment of the eDIANA
embedded devices and applications (i.e. Cells and MacroCells). It is, therefore, a
requirement that the modelling methodology and tools are well aware of the
characteristics of the eDIANA platform, as well as aware of its devices and
communication needs.

Due to the fact that neither the eDIANA platform nor the eDIANA devices are defined
at this phase of the project, the eDIANA methodology will be defined on top of the
principles defined for them. These principles are available in the document “eDIANA
scenarios descriptions”.

According to this document, the eDIANA platform will be built on top of six
principles:

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 10

1. Strict component orientation. Components will be the smaller pieces of
the platform, and their functionality will not vary from one scenario to
another.

2. Two level organization. The eDIANA platform will be organized in two
different levels, the MacroCell at the top control level and the Cell at the lower
control level. The cardinality between MacroCells and Cells will be of 1-N.

3. Connection hierarchy. The devices of the platform will be connected to
their local Cell, which will control the devices connected to it. The MacroCell
will be connected to the Cells and will be in charge of taking decisions from
the whole building or even wider perspective.

4. Control hierarchy. The eDIANA platform control for energy efficiency is
divided into two levels. At the top level, the MacroCell owns the most
sophisticated system wide control algorithms and it sends “not binding”
commands to the Cells. The Cells, at the lower level, have control over the
devices connected to them (e.g. plug&play services, discovery,
activate/deactivate devices, etc.), being this control based on their own
perspective and on the general policy and criteria set up by the Macro Cell .

5. Platform based on logical components. The devices involved in an
eDIANA application are defined by their logical behaviour and functionalities
provided by their services. Such a definition enables different implementations
to easily interact with each other. The independence between the logical
behaviour provided by a component and its implementation is known as
technology agnosticism.

6. Limited number of components. The eDIANA platform will identify a
number of logical components that will be used in eDIANA applications.
Despite the fact that this component list can be extended in the future, a few
number of component categories will be defined, both at MacroCell and Cell
levels.

From the point of view of the eDIANA developers, the design and development
methodology should support these principles providing means of checking the
compliance of the developed devices with the eDIANA platform principles and
requirements.

Regarding the two development paradigms present within eDIANA, the latter
principles affect differently the development processes of eDIANA devices and
complete eDIANA applications. The following table illustrates these differences.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 11

Development target Applicable eDIANA platform principles

eDIANA devices 5, 6

eDIANA applications 1, 2, 3, 4

Table 1. eDIANA platform principles and development targets

2.2 Relation with GENESYS

The GENESYS project is an FP7-STREP research project focusing on the development
of a cross-domain multi-level architecture for embedded systems and embedded
system based applications. The main outcomes of the project are:

GENESYS reference architecture template. This template is composed of a
series of core and optional services that will be used by embedded systems and
applications designers as support functionalities provided by the architecture by
construction. Moreover, the template is defined at different integration levels,
namely: Chip level (L1), Device Level (L2) and System level (L3). The architecture is
a template, since it has to be instantiated for each application domain (i.e. the
optional services have to be selected and, optional and core services implemented)
according to its peculiarities.

GENESYS methodology framework. The GENESYS methodology framework
consists of a set of model-driven methods, languages, transformations and tools that
support designers and developers of GENESYS compliant systems throughout the
whole development cycle. Similarly to the architecture template, the concrete
methods, languages, transformations and tools used for an instantiation of the
architecture may vary from the ones used in another instantiation.

From the point of view of the outcomes, the eDIANA platform can be seen as an
instantiation of the GENESYS architecture at both Device Level (L2) for the
development of the eDIANA devices, and System Level (L3) for the development of
control algorithms and configuration of operations and constraints of MacroCells and
Cells in the eDIANA scenarios.

Regarding the principles, GENESYS envisages a large set of principles applicable to
the reference architecture template and methodology. Among those, the most
important ones are [3]:

Strict Component Orientation. The systems developed under the scope of
GENESYS should be component based. The type of components used in the
architecture varies from an integration level to another, namely IP-cores at level L1,
chips at level L2 and devices at level L3. Moreover, in other to ease the composition
of GENESYS systems, each component must provide a Linking InterFace (LIF) to
enable interactions with it.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 12

Multicast Unidirectional Communications. In order to provide error
containment by construction, the GENESYS architecture foresees a multicast
unidirectional message-based communications environment in GENESYS compliant
applications.

Hierarchy of Services. The GENESYS reference architecture is based on a
hierarchy of services that will be supported by the architecture by construction,
therefore easing the designers’ task and increasing the portability of the applications.

Openness. The components of a GENESYS application are defined via their
functionality description (i.e. semantics & behaviour) and their LIFs (i.e. syntax).
Therefore, components are defined in the logical level leaving implementation details
to component developers. This enables the easy integration of third party
components into GENESYS applications.

Multiple integration levels. As we have already explained the GENESYS
architecture is intended to be applicable at a wide range of integration levels, from
Chip Level (L1) developments, to Device Level (L2) and System Level (L3)
developments; what leads to full integration of the development process of
embedded systems too.

It is important to note that the GENESYS architectural principles have been taken
from the ARTEMIS Strategic Research Agenda (SRA) [1].

• By comparing the GENESYS architectural principles and the eDIANA platform
principles it is immediate to discover similarities between the two sets. Indeed:

• Both GENESYS and eDIANA foresee a component based architecture for their
applications.

• Both GENESYS and eDIANA require the logical definition of the components to
enable technology agnosticism and enable the integration of third party
components into the applications under design.

The eDIANA platform can be seen as an instantiation of the GENESYS reference
architecture template.

Taking into accounts all the similarities between GENESYS and eDIANA, we are going
to develop the eDIANA methodology taking GENESYS [4] as starting point. This
methodology will be further described in the following sections.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 13

3. The Process Model

This section will describe the eDIANA design and development process model, its
main phases, artifacts, inputs and outputs. This model will provide the structure on
top of which we will define the MDE methodology of eDIANA platform applications.

The process model will also give eDIANA developers a set of guidelines and best
practices intended to provide eDIANA devices and applications of higher quality
figures.

3.1 Overview of the Process Model

Figure 3-1 represents the main phases of the eDIANA design and development
process based on the eDIANA platform principles and the GENESYS methodology.

System engineering starts with the requirements specification phase, which will be
based on the target eDIANA scenario and results in the definition of the functional
and non-functional properties, quality requirements and constraints of a system,
regarding both application and platform components. Moreover, the V&V evaluation
criteria take also in account quality requirements, prioritized according to the scope
and importance of the requirements.

The application architecture design phase takes as input the application requirements
defined in the requirements specification phase. Moreover, application designer may
reuse existing eDIANA application components taken from the application
components repository. Application architecture design phase results in a platform
independent model (PIM) of the application architecture which contains not only the
structure of the application, but also the behaviour of the application components
involved and a set of non-functional constraints and characteristics applicable to the
components and their LIFs [linking interface].

Complete platform architecture design is done by instantiating a set of existing
platform components. The components used may vary from a design to another
depending on the integration level of the system under design; moreover, these
components may be either hardware or software components (i.e. CPUs, IP-cores,
chips, operating system, middleware, etc.). The complete platform components
repository contains a set of reusable platform components. It is foreseen that
eDIANA devices will be introduced into this repository once they have been created.

Platform components provide a set of services to the application components above
them. These services must also be specified in the platform component descriptions.
If a particular service is missing from the platform components repository and a new
component is created, its interaction with the upper layers must be specified at this

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 14

level. The platform architecture design phase outputs a platform model created out
of instances of the platform components at a specific integration level that is further
used as a system-platform model upon which the application PIM is allocated to.

The system allocation phase maps the components in the application architecture
model onto the components of the platform model resulting in the complete system
architecture model. System models consist of a set of complementary views, namely
structure, behaviour, policies and allocation. These models contain the design
information of the whole embedded application, which is required for the next phase:
early V&V. In the system architecture design phase, the platform architecture is
configured for the use of a specific platform. In fact, in this phase the whole system
architecture is the first time described as a whole, and therefore, several refinements
are typically needed. These refinements may be required before and after performing
the early V&V evaluation phase. Architecture modelling and evaluation is a highly
iterative and incremental process, and what steps need to be performed depends on
the improvements defined as the results of the V&V evaluation.

Depending on the evaluation methods used, specific models may be needed for
quality evaluation purposes. These specific models can be derived from the system
model via model transformations created for that purpose.

The early V&V process is iterative. It starts from the V&V requirements of the highest
priority and goes down to the properties of lower priority. Each quality property is
evaluated separately, and thereafter the tradeoffs analysis is conducted. If conflicts
are encountered, a new iteration is to be taken (i.e. System Allocation and Early V&V
phases). When all the requirements are met the system model becomes the
validated design model, which will be taken as input for the realization of the system.
Realization includes a set of refinement and testing phases, which are not discussed
here. Thereafter, any new application components designed for the current
application can be included to the application components repository as a new
reusable service and, similarly, the validated platform components are also included
into the repository of platform models.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 15

Figure 3-1. The eDIANA development process model

3.2 eDIANA Process Phases

In this section we will describe in detail the process model phases (1-6) defined in
Figure 3-1, as well as their inputs, outputs, triggers and existing tool support.

3.2.1 Process Configuration phase

 Process Configuration

Description
The eDiana process is configured in this phase to adapt it to the new
system’s characteristics. The models and methods that will be used
during the process will be selected in this phase.

Start conditions The decision to develop a new eDIANA product or system.

Triggers System Requirements and V&V Scenarios Specification

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 16

Inputs Usage of models, system characteristics and modelling objective

Outputs Adapted Process: Selected set of models, methods and tools

Specification method
and language

Textual language and process specification

Tool support -

3.2.2 System Requirements and V&V Scenarios Specification phase

 System Requirements and V&V scenarios Specification

Description

Two steps or subphases are distinguished in this phase: The System
Requirements Specification phase will produce the requirements
documents for the development of applications and platforms of the
eDIANA systems. And the V&V scenarios specification will specify the
evaluation requirements to be applied in the V&V phase (5). Among
other documents, this phase will always take as an input the concrete
eDIANA scenario(s) in which the designed product is to be applied.

Start conditions
The decision to develop a new eDIANA product or system. And
process configured.

Triggers
Application Architecture Design phase and

Platform Architecture Design phase

Inputs

Targeted eDIANA scenario(s).

Customer requirements, market forecasts, standards, product
poRtFeatureolio.

Outputs
Application requirements, platform requirements and requirements
for early V&V evaluation.

Specification method
and language

SysML + MARTE Non-Functional Properties description.

Tool support Papyrus, Rational Software Architect.

3.2.3 Application Architecture Design phase

 Application Architecture Design

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 17

Description

The goal of this phase is to obtain a PIM of the application that will
be designed. The phase will use both existing and new models to
obtain an application model that meets the requirements described in
the application requirements document provided as input for this
phase. It is important to state that in order for the models to be fully
eDIANA compatible, the models used and generated during this stage
must follow the eDIANA modelling style, described in section 5.5.

Start conditions
This phase will start whenever the application requirements are
available. Once this phase has ended for the first time, it will restart if
the Early V&V phase detects a quality error in the application model.

Triggers System Allocation phase. And early V&V phase in some cases.

Inputs
Application requirements document.

Application components repository.

Outputs Application Model (PIM).

Specification method
and language

UML2 + MARTE (GCM, HLAM and NPFs subprofiles).

Tool support Papyrus, Rational Software Architect.

3.2.4 Platform Architecture Design phase

 Platform Architecture Design

Description

The goal of this phase is to obtain first an abstract model of the
platform architecture that supports the execution of the embedded
application. The phase will use both existing models and new models
to obtain a platform model that meets the requirements described in
the platform requirements document provided as input for this phase.
In order for the models to be fully eDIANA compatible, the models
used and generated during this stage must follow the eDIANA
modelling style described in section 5.4.

Start conditions
This phase will start whenever the platform requirements are
available. Once this phase has ended for the first time, it will restart if
the Early V&V phase detects a quality error in the platform model.

Triggers System Allocation phase.

Inputs Platform requirements document

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 18

Platform components repository.

Outputs Platform model of the system under development.

Specification method
and language

UML2 + MARTE (GRM, HRM, SRM and NFPs subprofiles)

SystemC / pseudo code/Verilog/VHDL

Tool support Papyrus, Rational Software Architect. CADENCE IUS

3.2.5 System Allocation phase

 System Allocation

Description

The goal of this phase is to map the application model obtained from
the Application Architecture Design phase onto the platform model
obtained from the Platform Architecture Design phase. As a result, a
full system architecture model will be obtained.

Start conditions

This phase will start for the first time when both the Application
Architecture Design and the Platform Architecture Design phases
have finished. After the first execution, this phase is executed once
again if the any of these phases is executed again.

Triggers Early V&V phase.

Inputs
Application model.

Platform model.

Outputs Plaform Specific (PSM) System model.

Specification method
and language

MARTE Alloc + all other languages used in previous phases.

Tool support
Papyrus, Rational Software Architect, MOFScript, Open
ArchitectureWare (OAW), ATL.

3.2.6 Early Verification & Validation phase

 Early Verification & Validation

Description
In this phase the system architecture model obtained from the
System Allocation phase is evaluated against the V&V requirements
defined in the requirements specification phase. The V&V evaluation

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 19

results may lead to a redesign of the application model, the platform
model or both. The resulting model will contain a validated system
design.

Verification & Validation can also be performed in an early phase
before system Allocation, after Application Architecture Design phase.

Start conditions
System Allocation phase is completed or in some cases where
Application Architecture Design phase is completed.

Triggers

Upon completion, this phase may trigger different phases depending
on the results:

- If one or more defects are detected the System model regarding the
system application, the Application Architecture Design phase is
triggered.

- If one or more defects are detected the System model regarding the
system platform, the Platform Architecture Design phase is triggered.

- If no defects are detected the Realization & Deployment phase is
triggered and the validated model is produced.

Note that as a result of the V&V tests more than one phase can be
triggered.

Inputs
V&V requirements

System model

Outputs Validated System model.

Specification method
and language

Different languages are used depending on the V&V methods
selected for the application.

Tool support

Specific analysis and V&V tools.

Model transformation tools are used for support (MOFScript, Open
ArchitectureWare, ATL)

3.2.7 Realization & Deployment phase

 Realization & Deployment

Description
The goal of this phase is to realize the validated system model
obtained from the Early V&V phase. The realization can include
design of HW components, source code and deployment. This phase

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 20

also involves the tasks of testing the realized system against the
design models and system requirements.

Start conditions This phase starts whenever the Quality Evaluation triggers it.

Triggers None

Inputs Validated System model

Outputs Finalized eDIANA device or application.

Specification method
and language

Different languages used depending on the final device or application.

Tool support

System specific compilers.

Model transformation tools are used for support (MOFScript, Open
ArchitectureWare, ATL)

3.3 Artefacts

This section will provide detailed descriptions of the artefacts involved in the eDIANA
development process.

3.3.1 Documents and Models

 eDIANA Scenario

Description

The eDIANA scenario holds a description of the scenario targeted by
the device or application currently under design. The selected
scenario has implications on the system requirements and, therefore,
must be provided by the client before the System Requirements and
V&V Scenario Specification phase starts.

Produced by Client

Used by System Requirements and V&V Scenario Specification phase

 Adapted Process

Description
This document contents the eDiana process adapted to be used in
the development of a specific product with the models and methods
to be used selected

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 21

Produced by Process Configuration phase

Used by Developers

 Application Requirements

Description
This document contents the requirements that the application have to
meet. It is the main input for the Application Architecture Design
phase.

Produced by System Requirements and V&V Scenario Specification phase

Used by Application Architecture Design phase

 Platform Requirements

Description
This document contents the requirements that have been defined for
the embedded platform. It is the main input for the Platform
Architecture Design task.

Produced by System Requirements and V&V Scenario Specification phase

Used by Platform Architecture Design phase

 V&V Requirements

Description

This document contents the verification and validation tests and
correctness criteria to be followed in the Early V&V phase.

Those V&V requirements will be defined at different abstraction level:
for V&V of the Application Architecture Design or for V&V of system
Allocation.

Produced by System Requirements and V&V Scenario Specification phase

Used by Early Verification & Validation phase

 Application Model

Description This model contains the application components that will be used in
the current eDIANA device or application design. Application models

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 22

must contain information regarding the structure, behaviour and non-
functional characteristics of the application under design. Lastly,
application models are always platform independent; however, it is
possible for application components to access platform services
through the use of model proxies.

Produced by Application Architecture Design phase

Used by System Allocation phase

 Platform Model

Description

This model contains the platform components that will be used in the
current eDIANA device or application design. Plaform models must
contain information regarding the structure, behaviour and non-
functional characteristics of the platform components used, as well as
information about their interfaces.

Produced by Platform Architecture Design phase

Used by System Allocation phase

 System Model

Description
This model is created from the application and platform models. The
system model combines coherently these two models to provide a full
system description that can be used for early V&V purposes.

Produced by System Allocation phase

Used by Early Verification & Validation phase

 Validated System Model

Description

The validated system model is a system model that fulfils all the V&V
requirements defined in the System Requirements and V&V Scenario
Specification phase. This model contains a verified design model that
will be used for realization and deployment purposes in the last phase
of the process model.

Produced by Early Verification & Validation phase

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 23

Used by Realization & Deployment phase

3.3.2 Repositories

 Application Components Repository

Description

The application components repository is an organized database with
validated eDIANA application components. These components might
have been developed in other development contexts. The repository
enables the designer to reuse these components in future eDIANA
developments.

Used by Application Architecture Design phase

 Platform Components Repository

Description

The platform components repository is an organized database with
validated eDIANA platform components. These components might
have been developed in other development contexts. The repository
enables the designer to reuse these components in future eDIANA
developments.

Used by Platform Architecture Design phase

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 24

4. System Requirements Specification

4.1 Overview on the problems

The biggest problems to be solved lie in the field of coordination of a huge number
of controlling devices (Cells) that operate in different environment, having the need
to cope with the different profiles of each owner without losing the objective to
achieve energy efficiency and select the best decision of buy-sell of energy produced
by local distributed micro-generation. The problem is worsened even more by the
need to establish a real time cooperation and exchange of information among the
Cells and between the set of Cells and the Macro cells. By using or mixing the tools
that are described herein below, it is crucial to devise a formal set of requisites that:

• Supports the categorization of different requisites in a small number of set
containing a number of homogeneous requisites

• Can be transformed in a set of strong and weak constraints for the
optimization algorithms

• Allows formal validation of the transformed requisites vs. the original ones and
permits early evaluation of feasibility vs control policies

• Allow easy manipulation of requisutes to allow modification that confirm
feasibility

Another set of information to be taken into account and fromalyy described is related
to communications issues. In this case what is necessary to correct specify in terms
of constraints and requisites is:

• Requisites that define the concept of real time exchange of information for this
specific application

• Value of information and cost of its loss in terms of the quality of performance
of control algorithms and decision support systems

• Requirements about the need to recall (or reconstruct) the correct information

The final set of requisites to be set via a formal support tools concern the interaction
with the users either as controllers (At Macro cell level or even higher) or at Cell
Level (typically the owner). Since these requisites (subjective in nature) are likely to
have a difficult transformation in a set of objective requites, the methodology is
required to:

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 25

• Devise a proper methodology to formalize the issues from users

• Identify the mechanism to transform these issues in one or more set of
requisites

• Provide an objective tool to verify and validate these sets of requisites

4.2 Requirements engineering

One of the main problems in Software and Systems Engineering is to bridge the gap
between customer and analyst: to get the analysts to have an in-depth
understanding of the problem and business needs, and to get the users to
understand how the solution that the analysts propose will solve those needs.

In order to deal with these problems, Requirements Engineering has been developed
as the branch of Systems Engineering that covers all of the techniques, methods,
and procedures applied to the definition and management of the user needs that the
system under study in this case eDIANA project must satisfy.

Requirements are vital throughout the whole lifecycle of a system. The process of
building a system begins with the identification of high level user requirements, that
get completed and refined in later stages of the project lifecycle, and eventually
evolve into technical specifications that define the system to be developed.

4.2.1 Requirements development and Requirements management

We can split the entire domain of software requirements engineering into
requirements development and requirements management .

We can further subdivide requirements development into four engineering activities,
elicitation, analysis, specification, and validation, as illustrated in Figure 1 (Abran and
Moore 2001).

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 26

Figure 1: Subcomponents of requirements engineering.

Requirements Elicitation – Deals with discovery, review and understanding of
requirements between the customer(s) and developer(s). For the elicitation phase
eDIANA project will use Structured Natural Language templates for capturing the
requirements for the customers. These templates will be developed based on the
taxonomy or ontology created for the classification of the requirements in a formal
way.

Requirements Analysis – Reasoning and analyzing the needs of customers and
users to arrive at a definition of software requirements. A major requirements
analysis activity is to derive more detailed requirements from higher-level
requirements. Analysis also involves creating multiple views of the requirements,
such as prototypes, graphical analysis models, and tests. Other aspects of
requirements analysis include negotiating priorities, searching for missing
requirements, and evaluating technical feasibility, risk, and failure modes. Analysis
provides a feedback loop that refines the understanding that the analyst developed
during an elicitation activity.

Requirements Specifications – Process of producing a record of each of the
requirements clearly and precisely. Traditionally these records are documents
containing natural language text. As we'll see in this book, though, other
representation techniques also are valuable, such as graphical analysis models,
tables, and mathematical expressions. The "specification" could consist of
requirements information stored in a database, as in a commercial requirements
management tool, rather than being a traditional document.

Requirements Verification and Validation – Assurance that requirements
specifications are an adequate basis for the preliminary design phase. Ensures that
the product fulfils its specific intended use. will satisfy customer needs, and have all
the characteristics of high-quality requirements. Validation might lead the analyst to
rewrite some requirements specifications, to reassess the initial analysis, or to correct
and refine the set of documented requirements.

Requirements Management – Overall process of planning and controlling the
requirements elicitation, analysis, and verification activities listed above. In the other
Requirements management commences when the team says they believe their
requirements are good enough to serve as the foundation for design and
construction of some portion of the product. At this point, the analyst defines a
requirements baseline, a snapshot in time that represents the current reviewed,
agreed-upon, and approved set of requirements for a specific product release.
Project stakeholders make schedule and cost commitments based on the

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 27

requirements baseline. Because changes in the baseline can affect those
commitments, formal change control begins at the time the baseline is established.

4.2.2 Requirement traceability

Customers say what they want in requirements. They can only be sure they get it by
verifying that each requirement has been met. To do this, the acceptance tests must
trace back to the requirements, covering all of them appropriately. Incidentally,
scenarios of interest to users are good candidates for acceptance test scripts.

Similarly, the developers can only be sure they are implementing all the requirements
if they can ultimately - though not necessarily directly - trace each design element
back to the requirements concerned, and check that each requirement is fully
covered. They can also use traces in the other direction to show that each design
element is actually called for in the requirements. The management of traces
between engineering objects such as requirements, tests, and design elements is
called traceability. It is a vital tool in managing system development through
requirements.

Advantages of using a requirement tool

A requirements tool can help you check that there is at least one trace from each
requirement to the design: if there are any untraced requirements, there is work to
be done. But it can't check that the traced parts of the design are sufficient or
correct - that's your job. There may be any number of links between requirements
and system or test specifications:

Handling traceability and change without a requirements tool is tedious, and it is
easy to make mistakes. The design changes quite often and requirements need to be
updated as well. On any but the smallest project, tracing requires reliable, industrial-
strength tool support. To keep track of changes by hand means recording in a table
each change to each requirement, each design element, and each test, and checking
each time via a traceability matrix for any possible impact on other items. If you
need to trace directly to design, a requirements tool that can interface directly with
your design tool is virtually essential.

4.2.3 Requirements management tools

To manage all of the before mentioned activities, the market offer different solutions
to carry out all the lifecycle that we need to cover. These kind of tools allows to map
all the requirements in Use cases and modelling these in the system to achieve the
UML models for transformation process in MDA.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 28

For example, Rational RequisitePro is an easy to use requirements management tool
that lets a team:

• Author and share their requirements using familiar document-based methods
while leveraging database-enabled capabilities such as requirements
traceability and impact analysis.

• Apply requirements management using the Use Case technique which should
help the eDIANA project to manage individual requirement artifacts and fit
requirements within the Rational Unified Process (RUP).

• Make customizations to the requirements process specific to the eDIANA
project and work with guidelines and techniques for capturing functional and
system requirements.

• Use traceability and tools to automate time-consuming processes . Specify,
validate and manage evolving requirements.

At the end, Use Cases provide the basis for the whole object-oriented, software life
cycle including architecture, design (including GUI design) and development. At the
same time Use cases help testing efforts by facilitating the creation of test cases. All
tests must contain a sequence of events, which will be followed to test a particular
area of the eDIANA system.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 29

5. Architecture Design

This section is targeted to to describe the modelling methodology applicable to the
three phases of an eDIANA platform architecture design, namely, the Application
Architecture Design phase, the Platform Architecture Design phase and the System
Allocation phase.

The models involved in each of these phases will be explained in terms of views,
modelling languages, etc. and a set of modelling guidelines and constraints will be
given. In order to develop a completely coherent model-driven development
framework, it is necessary to constrain the modelling languages to a subset in order
to enable the reusability of the model transformation engines, e.g. to connect system
designs with analysis tools.

Lastly, eDIANA specific components will be addressed in the methodology framework
in order to ease the designers’ job to use this modelling methodology.

5.1 Modelling Languages

The eDIANA platform will be an integration of different systems that cooperate with
each other towards a common goal. One of the main characteristics of an eDIANA
application is heterogeneity. Any eDIANA platform will be typically composed of
devices from different vendors, each running different applications and operating
systems and they will be probably built on top of different hardware platforms. The
eDIANA model-based design and development methodology has to be aware of this
extra complexity and provide an integrated modelling framework. Moreover, this
modelling framework should be easily integrated with the modelling abstractions
currently used in the embedded systems industry to enable a smooth transition from
legacy methodology toward the eDIANA approach.

On the other hand, we have already discussed the similarities between eDIANA and
GENESYS. The development of GENESYS systems is supported by a generic model-
driven methodology intended to be applicable to the whole design and development
cycle of the embedded products. Taking into account the latter similarities, it is
reasonable to think that the GENESYS methodology could be adapted to the eDIANA
requirements.

Taking into account the latter considerations we present a UML centric modelling
approach enriched with the profile for Modelling and Analysis of Real-Time
Embedded systems (MARTE). MARTE is a UML profile, standardised by the OMG,
which provides a set of subprofiles and stereotypes for embedded systems modelling
and analysis. Since UML+MARTE is intended for cross domain embedded
applications, it is a suitable language for the eDIANA platform modelling and design.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 30

Moreover, due to its broad modelling scope, MARTE can be adapted and transformed
to domain specific and tools specific languages to enable integration of the whole
development process of the eDIANA platform. Lastly, it is important to note that
MARTE is a profile constructed on top of UML. UML already provides designers of rich
and very low level constructs to describe the behaviour of the systems and
components. Such a low level description of the behaviour enables transformations
from models to implementation code.

Therefore, the proposed methodology framework establishes a MARTE centric
approach for modelling that integrates other modelling languages, analysis tools and
which provides code generation.

Figure 5-1. The MARTE centric modelling approach
As we already stated, in order for the methodology to be successful it is mandatory
that modelling languages already in use in the embedded systems industry are
integrated into the modelling framework. In the following lines we will describe those
relevant to the eDIANA platform.

5.2 eDIANA Architectural elements

The eDIANA platform principles state that any eDIANA deployment must be strictly
component oriented. Following this criterion, the eDIANA MDE methodology
proposes a component oriented framework for designing eDIANA devices and
applications.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 31

In order to create the component-based design framework it is a requirement to fully
characterize the whole range of eDIANA platform and application components,
including all the different scenarios and hierarchical levels (i.e. Cell and MacroCell).
The component repositories described in the process model will store the eDIANA
components collection. Yet, to use these components in an MDE environment, it is
also necessary to create eDIANA compliant models that can be reused during model-
driven design stages.

Depending on their nature, application or platform components, the modelling
constructs required for them vary. Application components are basically composed
of:

Job. The job is the concrete functionality provided by the component. A job may be
further split into tasks; however, from the component based designer’s point of view,
the job of a component implies certain behaviour and a set of non-functional
properties.

LIF (Linking InterFace). The LIF specifies the messages and signals consumed
and provided by the job.

On the other hand, platform components provide the physical entity that
hosts/contains the logical application component. It is also possible that some
platform components (e.g. software libraries, middlewares...) provide services used
by the applications (i.e. APIs).

In the eDIANA platform the following component types are foreseen:

• Cell Level

- Local control component: algorithms

- Local control component : local acquisition of data and processing

- Local control component : communication (peer to peer) and hierarchical

- Local control component : simplified HMI

- Local control component : diagnostic

- Local control component : performance evaluation

• Macro cell level

- Control component : scenario evaluation

- Control component: optimization policy

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 32

- Control component: decision support

- Control component : iterative optimization and policy setting

- Local control component : communication (peer to peer) and hierarchical

- Local control component : simplified HMI

- Local control component : diagnostic

- Local control component : archival and data retrieval

5.3 Transformation framework

The design and development framework and methodology proposed for eDIANA is
intended to be flexible and dynamic. In terms of flexibility, the eDIANA methodology
aims at enabling a smooth transition for the legacy development tools to the modern
MARTE based approach as was already stated before. Moreover, it is also important
to provide some level of automation between the development process phases.

The methodology described in this document proposes a set of transformations that
integrate the different development tools into the eDIANA process and also
transformations that integrate a set of required analysis tools.

5.4 Platform Architecture Design

The Platform Architecture Design phase deals with the modelling of the platform
architecture that supports the applications designed during the Application
Architecture Design phase.

Platform requirements can be business requirements, system requirements and
technical constraints. Business requirements scope the platform architecture design.
System requirements define which kinds of properties are required from the
platform; they can be technical features and/or restrictions that affect the platform
like pricing, weight, communications. Technical constraints are based on earlier
decisions or standards the platform has to support.

The eDIANA platform designs may address the development of new eDIANA devices
(equivalent to GENESYS Device Level, L2) or full eDIANA applications (GENESYS

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 33

System Level, L3). Each of these levels addresses different application description
challenges through the use of modelling techniques.

Device level applications focus on creating complete embedded devices. They make
use of platforms that can, for example, be composed of a set of chip level platforms
providing services to device level applications. Additional middleware and services
may be used on top to provide a powerful interface to application designers.

System level applications are composed of a set of distributed devices that interact
with each other. At this integration level only software platform elements may need
to be considered (e.g. communications middleware) since the devices composing the
application already have their hardware/software architecture defined.

Despite their nature, hardware or software, platform elements have to be considered
using two different points of view: a structural view and a behavioural view. Both
views are defined at the logical level. The first view provides a designer an
understanding of which kinds of building blocks the platform is composed of, and
which kinds of services are provided for the applications. The behaviour view
describes how the defined building blocks of the platform structure work together
and depend on each others. It also enables system simulation that allows early
detection of design errors, increases the quality of the final system and reduces
maintenance costs.

The platform architecture modelling produces the models of the following views:

Structural view. The view describes the platform architecture from its structural
point of view. The platform architecture model is composed of resources (both SW
and HW) at different granularity levels (e.g. processor, computing node, multiple
interconnected computing nodes).

Behavioural view. The behavioural view describes the behaviour of the services
included in the platform structural view. The behavioural view can be provided using
different mechanisms, such as pseudo-code, UML models, etc.

The structural and behavioural views form a skeleton of the whole platform
architecture and it is used for allocating/mapping application models onto it. The
following sections describe the definition of the structural and behavioural views with
UML-MARTE. Defining non-functional and quality properties is also possible in these
views.

5.4.1 Structural view

The structural view of a system’s platform is meant to describe which elements the
execution platform consists of. The execution platforms are composed of hardware
and software elements. The structural views represent real elements that have

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 34

critical influence on the non-functional properties of a system. These non-
functionalities have to be captured in the platform models in order to be able to
achieve useful simulation and evaluation results in future phases of the embedded
systems development process.

The structural view of a system’s platform provides information about the real
elements of the execution environment intended for the application/service under
construction. Those model elements refer to real resources in the final systems.

MARTE provides platform modellers the Generic Resource Modelling (GRM) sub-
profile which allows describing embedded platforms at the high level including both
SW and HW in a generic way, without going into details of the actual platforms (i.e.
which processor and/or operating system). In the following subsections we will try to
describe how to use this sub-profile to model the resources of the embedded
platforms.

There is a necessity to differentiate between application and platform elements. The
former were discussed in section 5.5, the latter in this section.

5.4.1.1 MARTE GRM concepts for execution platform modelling

An embedded system platform model is composed of models of SW and HW
elements and their interaction relationships. The GRM sub-profile gives concepts
Resource, ResourceService, and their corresponding instances ResourceInstance and
ResourceServiceExecution. Resources are used to model the execution platform from
a structural point of view, while the resource services supply the behavioural point of
view.

As it occurs with classifiers, the execution platform may be represented as a
hierarchical structure of resources.

• Resource types:

• Storage resources

• Timing resources

• Synchronization resources

• Computing resources

• Concurrency resources

• Generic device resources

• Communication resources: end-points and media

These concepts have to be addressed by the modelling language; for example in
MARTE, a Scheduler is defined as a kind of ResourceBroker that brings access to its
broked ProcessingResource or resources following a certain scheduling policy.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 35

SchedulableResource is defined as a kind of ConcurrencyResource with logical
concurrency.

When the executionBehavirours of concurrencyResources need to access common
protected resources, the underlying scheduling mechanisms are typically
implemented using some form of synchronization resource, (semaphore, mutex, etc.)
with a protecting protocol to avoid priority inversions.

ResourceUsage links resources with concrete demands of usage over them. A few
concrete forms of usage are defined at this level of specification under the concept of
UsageTypedAmount; those are aimed to represent the consumption or temporary
usage of memory, the time taken from a CPU, the energy from a power supply and
the number of bytes to be sent through a network.

As we can see, each construct needs its own representation in the eDIANA platform
models and, therefore, they must be specified following a

Platform architecture model – structural view

When modelling execution platform it is usually presented as a hierarchical layered
model, e.g. platform layer consisting of a set of (different) computing nodes linked
with (internal) network communication, computing node (also called processing node
or sub-system) layer consisting of components and component layer, all layers
containing appropriate software implementing system services.

Examples at the component layer are processing (e.g. programmable processors),
storage (e.g. volatile memories) and interconnection (e.g. bus) elements as well as
OS/scheduler and device drivers. Their services are of basic type, like read, write,
etc. Examples of NFP property types include e.g. clock frequency, cycles-per-
instruction, pipelining, read-latency, write-latency and burst-latency.

Example at the computing node layer is composed of bus, different processor types
each with private memory, OS and device drivers, shared memory, shared I/O
component and shared network interface component (to connect to network
communication at the platform layer). A processing node is capable of providing
generic multi-tasking (multi-processing, multi-threading) and device driver services.
Examples of NFP property types include e.g. task processing time, service processing
time, number of task switches, number of processor cycles used, communication
latency/delay, etc.

Example at the platform layer is instances of different types of computing nodes
connected with (internal) network communication. Examples of NFP property types
are similar to the computing node layer, but now possibly aggregated if services span
several computing nodes.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 36

In the following subsections we will provide some UML+MARTE modelling guidelines
related to platform components that might be useful to eDIANA developers.

5.4.1.2 Modelling processing units and tasks

The most common layout of an embedded application is that of concurrent execution
threads competing for the processing core/s of the embedded device. These threads
are abstracted by the underlying operating system and they are scheduled following
the criteria of a certain scheduling policy.

To model this layout, MARTE GRM subprofile provides the designers of three
stereotypes: <<ComputingResource>>, <<Scheduler>> and
<<SchedulableResource>>. Figure 5-2 depicts an example layout with a single
processor scheduled via a fixed priority policy. The figure shows three tasks that
compete for the processor.

Figure 5-2. Modelling a processor and three tasks.

As shown in the latter diagram, the relations between processors, schedulers and
tasks are clearly defined by using the MARTE stereotypes.

Schedulers are a fairly important element in embedded applications running on top
of Real-Time Operating Systems (RTOS) and the profile allows describing it with a
great level of detail. The latter diagram shows a fixed priority scheduler that is
hosted (executed) by the system processor. As shown in the example, the scheduler
is scheduling the access of a list of schedulable resources (i.e. processes or threads)
to the processor’s computing resources. In order to do so, the scheduler will follow a
fixed priority policy with pre-emption.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 37

Threads can also be further described using the properties defined for the
<<SchedulableResource>> stereotype. In this case, the three tasks defined are
described by “FixedPriorityParameters” instances which only contain one parameter:
priority. The subprofile also defines parameter types for other scheduling policies. In
order for the model to be consistent it is necessary that the parameters used to
describe system threads match the scheduling policy used by its scheduler.

5.4.1.3 Modelling shared resources

A problem related with multithread programming is handling the access of the
different tasks to the shared resources. MARTE GRM sub profile provides the users of
two stereotypes to model shared resources depending on access protocols. These
stereotypes are <<SynchronizationResource>> and <<MutualExclusionResource>>.
The main difference between these two resources is that the synchronization
resources refer to unmanaged elements like semaphores and mutexes while mutual
exclusion resources refer to elements handled by an access protocol. Figure 5-3
shows the three tasks defined before and two shared resources of different types.

Figure 5-3. Modelling shared resources with MARTE.

The diagram shows how a shared variable can be modelled following both
approaches. In this case the mutual exclusion resource depicted follows a priority
inheritance protocol managed by the system scheduler that was presented in Figure
5-2.The MARTE GRM subprofile allows describing this relationship through the use of
the stereotype properties defined. The shared elements have been modelled using
<<StorageResource>> stereotypes. These stereotypes will be covered in the
following section.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 38

5.4.1.4 Modelling variables and shared memory

One of the most important characteristics of embedded devices is resource limitation.
Among all, the most critical resource in embedded applications is memory.
Therefore, in order to successfully describe embedded applications it is necessary to
precisely model memory resources and requirements. The MARTE GRM subprofile
uses the <<StorageResource>> stereotype (presented in the latter section) to
model data containers. Figure 5-4 adds a finer grain description of the example in
Figure 5-3.

Figure 5-4. Detailing variables and memory in MARTE.

In this example the size of the shared information in the priority inheritance resource
defined before is specified. Although these aspects might not be strictly platform
issues it is important to describe them in order to know whether a specific platform is
well suited for a certain application.

5.4.1.5 Modelling communication resources

Another important aspect of embedded systems is the capability of interacting with
other devices. In order to do so, system must access communication media and use
communication resources. The MARTE GRM sub-profile provides two stereotypes to
model communication resources, both resources internal to the operating systems
(i.e. pipes, IPC...) and network resources (i.e. Bluetooth, IP networks...). The
following example depicts how a TCP socket connection is modelled using MARTE
GRM.

Figure 5-5. Modelling communication resources in MARTE.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 39

As shown in Figure 5-5, the <<CommunicationEndPoint>> stereotype is used to
model the platform element in charge of transmitting the messages to a
<<CommunicationMedia>> and/or receiving incoming messages from remote peers.
Many real-time applications need predictable communication resources (e.g.
industrial SCADA systems). These applications use real-time networks to achieve a
predictable communication between network devices. MARTE provides support to
model this kind of networks. In the example a TCP/IP network is modelled. IP
packets can be prioritized according to a fixed priority policy. In order to model this
kind of behaviour, we have used a virtual network scheduler which is not related to a
physical component, but yet affects the communication behaviour. Again, in order to
keep the model consistency, the element sizes for communication media and end
points must be the same/compatible.

5.4.1.6 Modelling platform black-boxes

It is common that embedded applications use both dedicated hardware and/or
special software libraries to help developers perform a certain action (e.g. driver to
access a sensor or an MP3 hardware coder). These pieces of hardware/software are
treated as black boxed by the application designers and developers who will use the
specific devices without caring for its implementation details. MARTE GRM allows
introducing such an element in our platform models by using the
<<DeviceResource>> stereotype. Figure 5-6 shows an FFT accelerating hardware
piece that interacts with the control task modelled before.

Figure 5-6. Modelling support hardware as device resources.

The stereotype allows the distinction of hardware and software resources by using its
properties. A hardware device resource will use the speedFactor property to specify
its processing speed with relation with the main computing resource in the system.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 40

On the other hand, software libraries won’t specify a speed factor. A device resource
may also use a scheduler to prioritize elements accessing it.

5.4.1.7 Modelling timing resources

It is common to find embedded devices that rely on different timing resources which
they use for different purposes. MARTE GRM provides two stereotypes to model
clocks and timers. Figure 5-7 shows a timer resource included in our example.

Figure 5-7. Modelling a timer.

As depicted in the diagram, we have now added a timer that will periodically inform
the system scheduler that it is time to reschedule the resources managed by it.
Clocks are defined in a very similar way. To obtain further information on modelling
timing resources please refer to the MARTE GRM specification.

5.4.1.8 Further refining platform structural models

In many cases the MARTE GRM sub-profile is expressive enough to describe platform
architectures; however, in certain cases it is possible that the platforms models may
be too generic for the application under construction or regarding further phases of
the eDIANA development process. If this should be the case MARTE provides two
specific and more concrete subprofiles for software and hardware description: the
MARTE Software Resources Modelling (SRM) subprofile and the MARTE Hardware
Resources Modelling (HRM) subprofile respectively.

5.4.2 Behavioural view

The behavioural view is presented as the interfaces and their state machine
descriptions (i.e. protocol) of the above mentioned services.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 41

Regarding the methodology framework, in order to model the behaviour of the
platforms, UML behaviours (i.e. activity, sequence and state machine diagrams)
could be useful to model interactions within the platforms.

In order to reflect how platform behaviour can be modelled, an operating system
round-robin scheduling pattern is modelled. The example, which is based on [5],
describes a round-robin scheduling algorithm by a class diagram (structural view)
and a sequence diagram (behavioural view). The model elements that complete the
pattern have been stereotype according to the GRM.

The round-robin pattern schedules a set of ordered processes with static priorities by
assigning time-slots to each of them. Once each processes completes the processing
time it is pre-empted and the processor is assigned to the next process in the list.

Figure 5-8. Structural view for a scheduling pattern.

The class diagram above describes the main elements involved on the round-robin
concurrent pattern. As shown, a system scheduler is interrupted by a timer that is
has been previously configured at initialization time. The scheduler assigns time-slots
to execution threads which are characterized by their control blocks and stacks. Task
control blocks describe the initial addresses of each task and stacks refer to the
memory segments assigned to each task for storing temporal variables or parameter
or return values for system calls.

In order to describe the behaviour of the platform, a sequence diagram showing a
possible scenario is provided below.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 42

Figure 5-9. Behaviour as a sequence diagram.

In order to ease a link between the models and the analysis/simulation tools UML
provides the option of using opaque behaviour UML model elements. Opaque
behaviours are defined by pieces of code or pseudo-code regarding it specification;
therefore, using these approach, it is very simple to establish a link between the
UML2+MARTE models and other modelling languages like SystemC or BIP.

Each element in an architectural view represents real hardware and software parts.
Each element has, therefore, a behaviour that is implicit on that component’s nature.
Behaviroural views capture these behaviours and enable simulation and testing tools
to draw early conclusions from system design models.

Due to their link with reality, behavioural views are heavily constrained by non-
functional properties regarding timing, power consumption, weight, length, etc. The
more complete this kind of views are the greater will be the number of early test that
we will be able to perform of the system designs and the greater the quality of our
final products will be.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 43

5.5 Application Architecture Design

The Application Architecture Design phase is concerned with the design of the
applications from both functional and non-functional points of view. Moreover, in
order to enable composition, the services provided by the different eDIANA devices
have to be defined, not only at syntactical level, but also at behavioural and semantic
levels.

The goal of the Application Architecture Design phase is to produce a platform
independent model of an eDIANA device or application. The phase produces the
following views:

Structural view. The structural view contains the definition of DAS (i.e. interaction
between jobs), the jobs, LIFs and messages that take part in the application under
design.

Syntactical view. The syntactical view contains the description of the protocols
that manage the access to a certain service. (The interface description is partly
defined by the structural view and the syntactical view).

Behavioural view. The behavioural view defines the behaviour of the application at
two levels: as behaviour of the application and as behaviour of the jobs involved in
the application.

Semantic view. The semantic view provides information regarding the semantics of
the application service. The semantic view is related to a service ontology that will be
an enabler for service composition engines.

Again, these views can be provided by different languages; however, they must be
integrable with the UML+MARTE modelling approach. It is possible that many
diagrams are included in a single view. It is also possible to describe two or more
views in the same diagram but it is against the separation of concerns, one of the
architecture design laws and breaching that law will lead to serious problems in
architecture evolution.

In order to provide developers with models that are expressive enough, it is
important to present the structures of the services and jobs in application
architecture. The next sub-sections will cover the modelling of each of these views
using UML2 and the MARTE profile. MARTE is a UML2 profile and, therefore, it
cannot be used without it. It is important to note that UML provides several ways to
describe the same aspects of the system models. This fact makes it difficult to
provide a unique method to create the models as many different diagrams can be
used to specify the same aspects in the models. For example, in many cases state
machines and activity diagrams can address the same behaviour. Therefore these
sections provide a best practices guide for using UML+MARTE.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 44

5.5.1 Structural view

The structural view describes the application as a whole and the building blocks, i.e.
jobs and interfaces, which it is combined of. The structural view of an application
provides information regarding the construction of the service. Services are defined
by their interfaces. Therefore, the structural view is described as follows:

Describe the jobs involved in the application under design.

Describe the service interfaces of each job and messages passed through each
interface.

Describe the application as a composite of jobs. Reuse the available application
service descriptions.

Describe the resources (e.g. variables, communication channel, etc.) shared between
jobs.

Map non-functional and quality requirements and constraints defined for the
application in the system specification phase to the appropriate diagrams of the
application.

The structural view has to describe the applications in terms of jobs, i.e. different
tasks that must be executed. Moreover, the different services involved in the
application must be defined in terms of their interfaces and the kind of messages
they request/provide. Lastly, structural descriptions also include passive elements
that help different jobs to communicate. The MARTE profile provides two specific
sub-profiles for this kind of view:

High-Level Application Modelling (HLAM) sub-profile and

Generic Component Model (GCM) sub-profile.

These two sub-profiles along with the UML2 constructs allow a rich description of
applications and services.

A cruise control system (CCS) is used as an example to illustrate the structural view.
The controller receives two input messages containing the current speed of a car and
the desired speed value selected by a car driver and computes an output signal that
affects the engine of the car. Thus, the controller provides three interfaces: two
input interfaces each of which reads a speed signal, and an output interface which
provides the control signal for the engine actuator. To model this controller we will
use a UML active class stereotyped with <<RtUnit>> from the MARTE HLAM sub-
profile. The stereotype gives a class for the semantics of a task or a set of tasks that
will be executed in some computing resource of the underlying platform. The
stereotype includes many properties that may increase expressivity of a class.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 45

The final structural model of the CCS controller is depicted in Figure 5-10. In the
figure, the real-time unit has three interfaces, each of which is modelled as a UML
interface with the <<BFeatureSpecification>> stereotype from the MARTE GCM sub-
profile. This stereotype gives interfaces the types of a signal/message
provider/consumer. It just adds a single property to the interfaces regarding the
direction of the signals/messages defined in them. The protected containers are
added for the speed signal values that the controller will receive. The stereotype
<<PpUnit>> gives a classifier the semantics of a protected passive element of the
system.

Figure 5-10. Structural view of a CCS controller.

Applications are compositions of jobs that further use application and platform
services for achieving the desired functionality/capability of a system. The MARTE
GCM sub-profile provides a composite diagram for defining applications by
components and connectors. The cruise control application will consist of four
components (i.e. instances of the clients and servers): two speed inputs provided by
sensors, the controller we defined in the earlier section and the engine actuator. The
components interact via UML2 ports (i.e. instances of their interfaces defined in their
structural views). To model these interactions a UML composite diagram is used.
Composite diagrams of applications are especially needed when application and
platform architectures are integrated together.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 46

Figure 5-11. The cruise control system composite.

Figure 5-11 shows the cruise control system using UML2 and MARTE. The ports have
been stereotyped with <<MessagePort>> stereotypes from GCM sub-profile that
give the ports the semantics of being message based communications. The CGM
sub-profile also allows modelling data streams. In order to do so we would use the
<<FlowPort>> stereotype instead.

5.5.2 Syntactical view

The syntactical view of the application describes how the services are accessed. A
syntactical description includes

a description of the messages involved in the access of a certain service,

a description of the communication protocols used,

the operational modes of the applications (e.g. different QoS, emergency modes,
etc.), and

non-functional and quality properties related to message, communication protocols
and operational modes.

The syntactical view of a service is often mixed with its structural view since service
syntaxes are always related to structural elements. For example, messages are
related to service interfaces and operational modes are related to the jobs that
execute the service.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 47

In this kind of applications the syntax of a service is defined by the signals/messages
that are exchanged by service-users and services and by the order in which these
signals and messages are sent from service-users to services and vice versa.

To show an example of modelling the syntax of a service we will use the example of
an application server. The structure of this server is depicted in Figure 5-12. As
depicted in the figure, the server admits three different kinds of messages: a
StartConnection message, a Data message and a CloseConnection message. The
server also uses two messages to answer the clients: Ack and Nack. The protocol is
defined using a UML2 state machine diagram that is pointed by the
“operationalMode” property of the <<RtUnit>> stereotype (Figure 5-13). We also
add a property to the server in other to keep track of its current state.

Figure 5-12. Structure of an application server.

Figure 5-13. State machine diagram of the application server protocol.

From a syntactical point of view, clients have to be aware of the structure of the
messages they must send to the server in order to interact with it. Messages, as

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 48

already has been shown, are modelled using UML2 signal elements. Figure 5-14
shows the messages involved in the current example.

Figure 5-14. Messages involved in the application server example.

In Figure 5-14, UML signal had been stereotyped using <<RtFeature>> from the
MARTE HLAM sub-profile. The <<RtFeature>> stereotype adds timing constraints
that must be accomplished at the interfaces that produce/consume each of the
messages (i.e. different deadline descriptions, deadline miss ratios, priorities and
arrival patterns). Table 5-1 shows all the properties of the <<RtFeature>>
stereotype in the HLAM sub-profile.

Property Type Multiplicity Description

utility
MARTE_Library::

UtilityType
[0..1]

An abstract type. It must defined by the user.
This type enables MARTE to include a semantic
description of this service.

occKind

MARTE_Library::

BasicNFP_Types::

ArrivalPattern

[0..1]
This property describes the occurrence pattern
for the arrival of this element.

tRef

MARTE_Library::

TimedObservations::

TimedInstantObserv
ation

[0..1]
This property describes a reference time that
will be used for relative time measures.

relDl NFP_Duration [0..1] Relative deadline.

absDl NFP_DateTime [0..1] Absolute deadline.

boundDl
NFP_BoundedDurati

[0..1] Bounded deadline.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 49

on

rdTime NFP_Duration [0..1]
Time used by the current element to perform its
work.

miss NFP_Percentage [0..1] Maximum admissible deadline miss percentage.

priority NFP_Integer [0..1] The priority of this communication.

Table 5-1. Properties of <<RtFeature>> stereotype
As can be seen from the table, no property defined by the <<RtFeature>>
stereotype is mandatory. The properties can be used depending on the designer’s
need for expressivity.

When the <<RtFeature>> stereotype is applied to signals it enables us to specify
the frequency at which a service has to be accessed. The property occKind is typed
as ArrivalPattern. ArrivalPattern is a MARTE <<choice_type>> which means that it
can be assigned any element typed with:

PeriodicPattern. This datatype describes the parameters of a periodic occurrence (i.e.
period, jitter and phase).

AperiodicPattern. This abstract datatype describes an aperiodic arrival pattern
defined by a statistical distribution.

SporadicPattern. This datatype describes a special aperiodic pattern where the time
between occurrences has some kind of bound.

BurstPattern. This datatype describes a special aperiodic pattern where occurrences
happen in bursts. The time interval between bursts as well as the time interval
between occurrences in a burst is bounded.

IrregularPattern. This datatype describes a special aperiodic pattern where
occurrences don’t follow any kind of periodicity. The occurrences are described as an
array of inter-arrival times.

Specifying these patterns in a message (i.e. in the interface of a service) gives
accessing clients information about the timing constraints needed to access the
service. Despite this kind of information is not needed in the application server
example; it is very useful to describe control or multimedia systems which are much
more coupled with time.

5.5.3 Behavirour view

The behaviroural view of an application describes the control flow between jobs and
applications. It is possible that many (implementation) constraints appear in

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 50

behaviroural views, since it is common to use variables, function-calls, etc. in them.
The behaviour view is very important in the early validation phase since it provides a
means to test the system’s functionality and evaluate that the system fulfils its
quality requirements related to applications. The behaviour view is also crucial in the
system realization phase, since the behaviour described in this view is what the
developers will implement in the final product.

The HLAM sub-profile of MARTE provides the designer with a series of stereotypes to
make some behavioural aspects present when describing the services and
applications. The behavioural aspects supported by the HLAM stereotypes include
quality of service (QoS) specification and execution, and concurrency and
synchronization aspects description.

The operations which support the services inside RtUnits can be given information
about their behaviour. The HLAM sub-profile provides designer of the
<<RtService>> stereotype to model how the servers react to incoming invocations.
Figure 5-15 shows the way this stereotype is used in the context of the application
server example.

The RtService stereotype is applied to the signal receptions in the interfaces of the
server RtUnit. In order to add a finer grain description of the behaviour of the
RtUnits or their interfaces it is necessary to use activity diagrams, sequence diagrams
or state machine diagrams. Figure 5-15 shows the activity diagram of the main
operation of the controller RtUnit of the CCS example. The diagram shows that the
controller starts up the system and then enters an endless loop in which it only
performs the control algorithm on the speed samples provided by the sensors and
then it sends a message to the engine actuator through the actuator output
interface.

Using the MARTE stereotypes in this kind of diagrams increases their expressivity
including extra information. The <<RtFeature>> stereotype, described before, adds
timing information to the actions. On the other hand, the <<RtAction>> introduces
information regarding signal sending and reception.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 51

Figure 5-15. Activity diagram of the main operation of the cruise control system

controller.
The <<RtBehavirour>> stereotype is used in behavioural UML diagrams modelling
how an RtService behaves regarding to invocation queues. It can be used in any kind
of UML behaviour diagrams (state machines, activities and interactions). Figure 5-16
shows the activity diagram of the current speed signal reception.

Figure 5-16. Current speed reception activity of the CCS controller.

The RtBehaviour stereotype is very useful to model services that prioritize some
invocations from others regarding their real-time parameters and QoS.

5.5.4 Semantic view

The semantic view describes the meaning of the services used in application design.
Semantic information is required of:

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 52

Functionality provided by the service,

Quality properties of the service,

Meaning of information/data provided by the service,

Usage constraints of the service, and

Context of a service, if it functional or quality properties can change according to the
context.

Although MARTE profile has great expressivity to describe real-time embedded
applications, it does not include immediate mechanisms to distinguish a service from
another from a semantic point of view apart from the plain service name.

Semantic information is often very close to ontologies and taxonomies. In order to
use MARTE to fully describe the services of the eDIANA platform it is necessary to
define an ontology of the services that an embedded application can request/provide
at the different integration levels. Once the ontology is defined, MARTE can be
extended or adapted to support the inclusion of this ontological information.

The <<RtFeature>> stereotype, defined in the HLAM sub-profile of MARTE, has
been widely used throughout this document to describe the eDIANA devices and
applications. <<RtFeature>> includes a property called “utility” that may enable to
add the semantics to service interfaces by specifying it in the <<RtFeature>>
stereotypes applied to the signals.

The UtilityType is defined as an abstract type in MARTE so that it can be refined into
user defined types. By extending this stereotype it is possible to include information
regarding reference ontologies, categories, etc. into MARTE compliant models.

5.6 System Allocation

The System Allocation phase of the eDIANA process model is related to the mapping
of the applications to the platform architecture elements that will support their
execution.

This phase includes an allocation view, the platform architecture configuration view
and additional information, e.g. probabilities of state transactions, needed for quality
evaluation purposes.

The allocation view defines how applications and services are deployed on the
computing and communication resources provided by the execution platform.
Typically, platform architecture needs to be configured that is made by parameters.
Additional information required for specific evaluation methods is provided by adding
the required information to the models provided by the earlier design phases. An

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 53

allocated system contains all the necessary information to implement the final
product. If the vertical model transformation is supported, simulation and target code
can be generated from the validated system architecture models.

The MARTE profile includes a specific sub-profile Alloc that allows a designer to
specify which application elements will be associated to which platform resources. In
this section we will use again the cruise control system (CCS) example to illustrate
allocation modelling in MARTE. Figure 5-17 depicts the platform model that will
support the execution of the controller of the system.

Figure 5-17. Platform model of the CCS controller.

The platform model of the cruise control system consists of a CPU managed by a
system fixed priority scheduler. Three threads have been defined, all of them hosted
by the system scheduler. Lastly, two shared protected variables have been defined,
each of them with a blocking call for acquiring and releasing the variable lock (i.e. a
mutex).

The allocation is performed using the structural views of both application and
platform models and using the <<Allocate>> stereotype on UML abstraction
dependencies. The <<Allocate>> stereotype allows further describing the nature
and kind of the allocation as well as any constraints to be applied during the
allocation process. Additionally both application and platform elements are
stereotyped with <<Allocated>>.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 54

Figure 5-18 shows the structural view of the application model allocated on top of
the structural view of the platform model. Each of the operations and receptions in
the controller has been allocated on the three threads and the passive protected
units have been mapped to mutex-protected variables.

Figure 5-18. Allocated model of the CCS controller.

5.7 Method selection and adaptation (Process configuration)

One of the challenges of software engineering practice is to provide “configurable
methodologies and process standards” [6]. This way is possible to configure
methodologies to provide support for agile methods and processes for small
development teams.

Software development is usually performed in small development groups, usually
with less than four participants and sometimes even is in charge of one single
person. There is a need for providing guidance to select and adapt methods and
models in the eDiana methodology.

MARTE is very complex and have a lot of sub-profiles and models. In the eDiana
methodology, some models and diagrams are proposed and this method will help to
understand better the purpose of each model and to know when to use which one.
For instance, for validating scheduling using a specific tool we need some specific
models.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 55

The adaptation method is a set of guided steps to select and adapt the eDiana
methodology. The adaptation should not be time-consuming for the developers, and
provide value to the development. The adaptation is based on the following aspects:

Usage: the models to be documented are those that are necessary in the lifecycle of
the system. Each stakeholder describes his interest and which information requires.
Among the stakeholders theoretically interested in models in eDiana system
development are the Domain expert, Software architect, Platform architect, Model
analyst, Tester and MDE expert.

System characteristics: Both the software/hardware nature and the quality
attributes that the system must fulfil are determinant in the selection of the models
to be documented and also for selecting the validation method and tool. The system
to develop can have only software if there is no hardware part or the execution
platform is provided or both software and hardware. It is important to consider if
there are relevant quality attributes and which are the high-priority quality attributes
because selected models and validation method must support the validation of those
quality attributes.

Modelling objective: The reason of modelling and the use of the models can be
different: for documenting the system for new employees, as a mean of
communication among stakeholders, with code generation purposes or in order to
validate quality attributes.

System Analysis

Method selection and adaptation

Analyze
system
features

Analyze
models
usage

Select models
and tools

eDiana
methodology

including models
and tools

“Useful” subset
of models

Determine
modeling
objective

•For modeling
•For code generation
•For quality validation

Selected
tools

Figure 19: Steps of the adaptation method

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 56

5.7.1 . Analyze models usage

In the development of a software application different stakeholders or roles are
involved and each one can have different level of interest in the models. In eDiana
system development the following main roles are identified:

Domain expert: A domain expert is a person who has specific domain knowledge
about the problem that is to be solved by the system and who model this knowledge.

Software architect: A software architect is the person in charge of designing the
software architecture of the application.

Platform architect: A platform or hardware architect is the person in charge of
modelling the platform architecture that supports the software applications

Model analyst: A model analyst is the person who is concerned with quality
validation, who is in charge of annotating system models and performing model
based validation.

Tester: A tester is the person who is in charge of testing the system.

MDE expert: A MDE expert is a person who has knowledge about model driven
engineering practices: definition of transformations, definition of Domain Specific
Languages (DSL), selection of modelling languages, views and methodologies, etc.
The MDE expert will select which models to use in each case depending on the
application to develop and actors involved.

In the Table 2, the interest of each of the models of the eDiana methodology for the
stakeholders is specified. This interest can be high, medium or low.

The analysis model is not mentioned in the eDiana methodology but this model will
be used for V&V and the way of describing will be defined in WP6.

Table 2: Interest of each role in the models
 Models

Stakeholders

Platform
Architecture
model

Application
Architecture
model

Allocation
model

Analysis
model

Domain expert - High - -

Software architect Low High High High

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 57

Platform architect High Medium High Medium

Model analyst High High High High

Tester Low High Medium High

MDE expert High High High High

5.7.2 Determine modelling purpose

The reason of modelling and the use of the models can be different. Four different
goals are distinguished:

Document the system: The main use of this documentation will be as a means of
education. New employees or external stakeholders will be able to understand the
system.

Communicate: The models are used as a vehicle of communication among
stakeholders, they are the basis for implementers, testers, maintainers, analyst…

Generation: In Model Driven Development models are not only used for
documentation or as a mean of communication, are the central point and drivers of
the development. Using the models code generation can be performed.

Analyze / validate: Models are uses as the basis for system analysis. The models
must be annotated with the information necessary for the particular analysis that will
be performed.

5.7.3 Analyze system features

Both the software/hardware nature and the quality attributes of the applications
must be considered.

Not all the applications to develop in eDiana will be the same. In same cases, only
software will be developed whereas in other cases, all the system (SW + HW) will be
the target:

Only Software: Applications where only software is designed and there is no
hardware part or the execution platform is provided and use as it is.

System (SW + HW): Applications where both software and hardware (the
execution platform) are designed and modelled.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 58

Moreover, in some systems quality attributes and their assurance will be critical such
as in safety critical or real time systems, whereas in other systems quality attributes
are not relevant. This way, two classifications have been made:

With relevant quality attributes: In many systems such as safety critical or real
time systems, quality attributes are a key aspect to consider. In those systems to
validate those quality attributes is almost always required.

With non relevant quality attributes: In this case, systems have not relevant
quality attributes to take into account. And to annotate and analyze models is not
necessary.

In the next table, information is provided about the modelling goal and system’s
features in order to help to select the most appropriate models of eDiana
methodology in each case.

Table 3: The eDiana methodology models and their purpose, target system and
required experience

 Platform
Architecture
model

Application
Architecture
model

Allocation
model

Analysis
model

Modelling purpose

 Document the system X X X -

 Communicate X X X X

 Generation X X X -

 Analyze / validate - - - X

System’s features

 Only Software - X -

 System (SW + HW) X X X

 With relevant quality
attributes

 X

 With non relevant
quality attributes

 -

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 59

6. Tooling support and integration

This section will provide an overview of existing languages, methods and tools
applicable in the context of eDIANA. These tools are provided in tables separated by
categories.

6.1 Requirements management tools

Tool Description and Features License

StarUML StarUML in an open source project that has as its goal
be a powerful modeling software and serve as an
alternative to commercial UML tools.

Main features:

• Support for multiple languages.
• Generates documents supported by the Microsoft

offices.
• Supports technology MDA.
• Optimizes the generated code.
• Is repeating given their status as open source.
• Supports certain patterns (course, EFB patterns).

Open Source.
GNU General
Public License
(GPL)

CASE Spec Software developed by Goda software which allows to
specify, analyze, verify and validate systems.

Main features:

• Allows you to sort the data through hierarchical
structures.

• Allows any artifact use cases (cases of evidence, etc.)
modeling.

• Establishes relations two to two between artifacts.
• Automatic version control.
• Automatic generation of documents specification with

diagrams and objects.
• Establishes links between data and physical files stored

in the system.
• Allows the concurrency of users as well as establish

groups.
• Allows exports and imports information.
• Generate history (log) reports.
• Manages user access control.

Open Source.
GNU General
Public License
(GPL).

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 60

Tool Description and Features License

Open Source
Requirements
Management
Tool

Tool designed to cover all the the software
development lifecycle (SDLC). In this life cycle is
include the Analysis of requirements, design,
implementation and testing.

Main features:

• Has versioning.
• Allows to define derived requirements.
• Allows to define attributes for requirements such as the

risk, effort, etc.
• Allows to represents both use cases and test cases.

Open Source.
GNU General
Public License
(GPL).

IRQA4 Tool developed by Visure and has the goal of serve as
application to provide a comprehensive support in a
project software requirements engineering.

In addition to include most basic tasks (capture,
analysis, modeling, organization and follow-up),
requirements engineering this application you have the
following features:

• Requirements reuse: allows that the requirements
defined in a project can be used in other projects have
been made by the Organization through the use. This is
achieved offering a small advantage of perform product
lines.

• Documentary view: this new option offers a pooling of
requirements that allows the user to see a clear
distinction between them and facilitating all work related
to these.

• Requirements engineering: Besides the management
requirements, this application provides functionality
related to the engineering requirements, allowing a
single tool centralize all activities related to the
requirements (including validation and acceptance
tests).

Commercial

Telelogic
Doors

Telelogic doors is a cross-platform system designed for
the management of requirements by capture,
traceability, bound, analysis and management of

Commercial

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 61

Tool Description and Features License

changes that they occur.

Main features:

• Provides a collaborative environment management
requirements.

• Analysis of traceability to identify risk areas.
• Easy management of changes in requirements.
• Allows to manage the traceability requirements easily by

drag-and-drop between screens items.
• Allows to manage a large number of efficiently through

a simple (high scalability) database requirements.
GatherSpace It’s a web application to work in a collaborative

manner. The most important features are:

• Traceability Matrix Reports: Provides a view of
dependencies between features, requirements use cases
and test cases.

• Issue Management: Includes the capability to manage
issues/bugs and associate them back to features and
requirements.

• Test Case Management: A highly requested feature was
to manage and associate test cases to requirements and
use cases.

• Use Case Modeling: Provides a unique way of depicting
the use case model in simple HTML view. This report
produces a high level use-case model on the fly.

• File Attachments: When defining requirements and
features, you can associate images, spreadsheets and
other docs and have them printable in the reports.

Commercial

IBM Rational
RequisitePro

Is considered one of the more comprehensive and
powerful analysis and requirements management tool.
One of the advantages is that can easily be integrated
with popular programs ie. Word, as well as with most
used database systems allowing have a central data
repository.

It also allows work for Web access can be accessed in
a distributed manner. Have an array for the follow-up
to the requirements that can represent both graphically
and textual form.

Commercial

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 62

6.2 Modelling languages and tools

Tool Description
Supported

Languages

Open

Source?

Papyrus

Papyrus is a UML2 open source modelling tools
with very good support for UML profiles.
Among others, Papyrus implements the SysML,
MARTE, CCM and LwCCM profiles natively.

UML2 +
Profiles

Yes

TOPCASED

TOPCASED is a huge modelling project over
Eclipse and the EMF. TOPCASED provides the
tools for creating editors for DSL and also
provides native editors for a set of modelling
languages (e.g. UML, SysML, AADL, SAM, etc.).
UML profiles are supported but not natively. No
UML profiles are provided with the tool.

Many Yes

Visual
Paradigm for
UML

Visual Paradigm for UML is a UML CASE Tool
supporting UML 2.1 and the Business Process
Modeling Notation (BPMN). In addition to UML
modeling support, it provides business process
modelling, an object-relational mapping (ORM)
generator for Java, .NET and PHP.

UML2 Yes

Poseidon for
UML

Poseidon for UML is a UML CASE Tool
supporting UML 2.1 The Embedded Enterprise
Edition is specifically designed for embedded
systems development.

UML2 No

IBM Rational
Software
Architect

IBM Rational Software Architect is a modelling
and development environment that leverages
the UML for designing architecture for C++ and
J2EE applications and web services.

UML2 No

Rational Rose
Rational Rose is a commercial tool for analysis, UML2 + MAST

No

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 63

modelling, design and construction. Profile

MDDi

The Eclipse MDDi project is dedicated to the
realization of a platform offering the integration
facilities needed for applying a MDD approach.
The MDDi platform will provide the ability to
integrate modelling tools, as well as tools
supporting other technological spaces, to
create a fully customizable MDD environment

Various
modelling
languages
(UML, Domain-
Specific
Languages)

Yes

6.3 Model transformation tools

Tool Description
Supported

Transformations

Open

Source?

MOFScript

MOFScript is model transformation plugin for
Eclipse and the EMF developed and
supported by SINTEF. It supports both
model-to-text and model-to-model
transformation specification.

M2T, M2M Yes

OAW

Open ArchitectureWare is a very powerful
model transformation plugin. It is built on
top of Eclipse and provides the widest range
of model transformations possibilities.

M2T, M2M, T2M Yes

ATL ATL is a M2M technology and is part of the
Eclipse M2M project. It can be combined
with the Acceleo M2T technology.

M2M Yes

Acceleo Acceleo is an open-source code generation
tool that has great integration with the
Eclipse IDE and EMF-based metamodels.
The tool has a strong emphasis on simplicity
and ease of use.

M2T Yes

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 64

6.4 Early Verification & Validation tools

Tool Description
Test

Kind

Open

Source?

MAST

MAST is a model-based schedulability analysis
tool for real-time systems. MAST is written in
Ada and it provides a user environment for the
creation of real-time models of the system
under analysis.

Schedulability Yes

Cheddar

Cheddar is a schedulability analyzer and
simulation engine for real-time systems. It has
been developed in Ada and it is integrated with
the AADL modelling language through
OCARINA.

Schedulability Yes

BIP
BIP is a modelling language that enables the
detection of deadlocks in application designs.

Deadlock
detection

Yes

VERSA The VERSA schedulability analyzer implements a
process-algebraic approach to schedulability
analysis for system threads under a wide range
of scheduling disciplines and inter- thread
dependencies for AADL models.

Schedulability Yes

IUS tool of CADENCE for cycle and/or event based
simulation. This tool is used for the validation
and verification of complex Multi Processor SoC.

Functional
verification

No

IFx IFx works on timed UML models written in the
OMEGA profile with widely used commercial
CASE tools like Rational Rose or I-Logix
Rhapsody.

Deadlocks,
timelocks,
satisfaction
of state
invariants,
timing
constraints,
control of
scheduling
policy, etc.

No

Furness
Toolset

The Furness™ toolset integrates and enhances
several open-source tools to create a single
unified environment for design, analysis and

VERSA
Schedulability
Analyzer

Open
Source
Edition
and also

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 65

implementation of embedded systems. Conformance
test

Licenses
are
available

KRONOS Kronos verifies timed automatons (UML models) Schedulability Yes (for
academia)

STOOD STOOD verifies UML 2.0 models and has also
support for AADL 1.0 models

Real-time
schedulability
analysis

No

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 66

Conclusions

The GENESYS [2] methodology is proposed for the MDE modelling of the eDIANA
project. GENESYS is an European research project (FP7-STREP) focusing on the
development of a cross domain multi-level for embedded system.

The implementation of this methodology is supported by a language that allows
modelling, designing and integrating the whole systems and applications of the
eDIANA platform. The proposal language is the UML and a standardise profile of it
for the real time embedded systems: MARTE (Modelling and Analysis of Real Time
Embedded systems).

Actually the GENESYS methodology and UML+MARTE language are not a state-of-art
for developing a complex system of systems that integrates MPSoC (Multi Processor
System on Chip) as the eDIANA platform.

Moreover both the scope and the short timeline of the project, don’t allow to allocate
specific effort for improving the methodology and the language

For these considerations, GENESYS and UML+MARTE approach will be the guideline
for the hardware and software development of the eDIANA platform but also specific
methodologies and tools will be apply for overcoming the actual limitation of the
proposal method.

Model Driven Engineering methodology for architecture
realisation

eDIANA: GA no.: 100012
D2.1-A

29 May 2009 Page 67

Acknowledgements

The eDIANA Consortium would like to acknowledge the financial support of the
European Commission and National Public Authorities from Spain, Netherlands,
Germany, Finland and Italy under the ARTEMIS Joint Technology Initiative.

References

[1] ARTEMIS SRA Working Group. “ARTEMIS SRA Reference Designs &
Architectures”, 2006.

[2] The GENESYS project website, http://www.genesys-platform.eu/
[3] Hermann Kopetz. “Overview of the Architectural Style”, GENESYS workshop,

Munich, February 2009.
[4] Eila Ovaska, András Balogh, Sergio Campos, Adrian Noguero, András Pataricza,

Kari Tiensyrjä & Josetxo Vicedo. “Model and Quality Driven Embedded Systems
Engineering”, VTT publications 705, 2009.

[5] Bruce Powell Douglas “Real-Time Design Patterns: Robust Scalable Architecture
for Real-Time Systems”. Addison Wesley, 2002. ISBN: 0-201-69956-7.

[6] ITEA Information Technology for European Advancement, Technology Roadmap
for Software-Intensive systems, 2nd edition, 2004

