

eDIANA

Embedded Systems for Energy Efficient Buildings

Grant agreement no.: 100012

Dissemination level

X PU = Public
 PP = Restricted to other programme participants (including the JU)
 RE = Restricted to a group specified by the consortium (including the JU)
 CO = Confidential, only for members of the consortium (including the JU)

D2.2-A Ontology for Device Awareness

Author(s): N. Arana ESI
 A. Noguero ESI
 T. Padilla I&IMS
 MJ. Mtz. de Lizarduy I&IMS

Issue Date 30 November 2009 (m10)
Deliverable Number D2.2-A
WP Number WP2
Status Delivered

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 2

Disclaimer

The information in this document is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

The document reflects only the author’s views and the Community is not liable for
any use that may be made of the information contained therein.

Document history

V Date Author Description

1 September
2009

I&IMS ToC definition and Architecture elements analysis

2 October
2009

ESI ToC modifications, objectives, applied methodology,
ontology

3 November
2009

ESI,
I&IMS

Final version

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 3

Summary

The Ontology for Device Awareness is a public document delivered in the context of
WP2, task 2.2 with regard to device awareness inside eDIANA architecture.

This document is about the ontology, a semantic technology, for device discovery
and interoperability in the context of eDIANA Platform. This document goes with the
prototype Ontology for Device Awareness that provides the semantic concepts of the
interaction between the different components and devices to composite the internal
situation of the system and its relevant external environment.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 4

Contents

SUMMARY...3

CONTENTS..4

ABBREVIATIONS ..7

TABLE OF FIGURES ..8

1. INTRODUCTION ...9

2. OBJECTIVES OF THE ONTOLOGY .. 10

3. ANALYSIS.. 11

3.1 BASIC FUNCTIONALITIES AND ELEMENTS ...11
3.2 IDENTIFIED COMPONENTS - DEVICES..13
3.3 COMMUNICATION AND INTERFACES..17
3.4 DEVICE AWARENESS IN MIDDLEWARE. ..18
3.4.1 OSGi.. 18
3.4.2 KNX... 19
3.4.3 ZigBee (Home Automation Public Application Profile) 23
3.4.4 CORBA... 27

3.5 ONTOLOGY LANGUAGES..29
3.5.1 KEE ... 29
3.5.2 KL-ONE.. 30
3.5.3 CLASSIC .. 31
3.5.4 KM .. 31
3.5.5 F-logic ... 32
3.5.6 CycL .. 33
3.5.7 LOOM .. 33
3.5.8 KIF .. 34
3.5.9 Ontolingua ... 34
3.5.10 SHOE... 34
3.5.11 RDF / RDFS .. 34
3.5.12 DAML+OIL ... 35
3.5.13 OWL .. 35
3.5.14 OWL Lite .. 36
3.5.15 OWL DL ... 36
3.5.16 OWL Full .. 36
3.5.17 OWL 2 – The Next Step... 37

4. APPLIED METHODOLOGY.. 38

4.1 DETERMINE THE DOMAIN AND SCOPE OF THE ONTOLOGY ...38
4.2 ENUMERATE IMPORTANT TERMS IN THE ONTOLOGY ..39
4.3 DEFINE THE CLASSES AND THE CLASS HIERARCHY ..39
4.4 DEFINE THE PROPERTIES OF CLASSES—SLOTS ..39
4.5 DEFINE THE FACETS OF THE PROPERTIES...40

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 5

5. SEMANTIC STRUCTURE OF THE ONTOLOGY... 41

5.1 INFORMATION LAYER. ..41
5.1.1 Information.. 41
5.1.2 Direction_Information ... 42
5.1.3 Input_Information .. 42
5.1.4 Output_Information .. 43
5.1.5 Comfort_Variable_Information ... 43
5.1.6 Humidity_Information ... 44
5.1.7 Luminosity_Information... 44
5.1.8 Noise_Information .. 45
5.1.9 Temperature_Information ... 45
5.1.10 Smart_Actuator_Command_Information ... 46
5.1.11 Change_Configuration_Command_Information.. 47
5.1.12 Change_Parameter_Command_Information .. 47
5.1.13 Switch_Mode_Command_Information... 48
5.1.14 Delayed_Turn_Off_Command_Information.. 48
5.1.15 Delayed_Turn_On_Command_Information.. 49
5.1.16 Turn_Off_Command_Information ... 49
5.1.17 Turn_On_Command_Information ... 50

5.2 SERVICE LAYER ..50
5.2.1 Service... 51
5.2.2 External_Service ... 52
5.2.3 PwGRIDi_Service .. 52
5.2.4 WWWi_Service ... 53
5.2.5 Internal_Service ... 53
5.2.6 Internal_Service ... 54
5.2.7 c2MCCi_Service .. 54
5.2.8 iEi_Service ... 54
5.2.9 Read_iEi_Service .. 55
5.2.10 Configuration_Read_iEi_Service ...55
5.2.11 UserData_Read_iEi_Service ... 56
5.2.12 Profile_Read_iEi_Service.. 56
5.2.13 Status_Read_iEi_Service.. 57
5.2.14 SensorData_Read_iEi_Service ..57
5.2.15 Write_iEi_Service .. 58
5.2.16 LogData_Write_iEi_Service .. 58
5.2.17 Configuration_Write_iEi_Service ... 59
5.2.18 Command_Write_iEi_Service..59
5.2.19 Reset_Command_Write_iEi_Service .. 60
5.2.20 Smart_Command_Write_iEi_Service ... 60
5.2.21 Value_Command_Write_iEi_Service .. 61

5.3 DEVICE LAYER ...61
5.3.1 Device ... 62
5.3.2 Simple_Device.. 63
5.3.3 Actuator... 63
5.3.4 Boolean_Actuator ... 64
5.3.5 Switch_Actuator ... 65

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 6

5.3.6 Trigger_Actuator... 65
5.3.7 Value_Actuator ... 66
5.3.8 Smart_Actuator .. 67
5.3.9 Sensor ... 67
5.3.10 Physical_Sensor .. 68
5.3.11 Airflow_Sensor.. 69
5.3.12 Gas_Sensor .. 69
5.3.13 Humidity_Sensor... 70
5.3.14 Light_Sensor .. 70
5.3.15 Power_Sensor... 71
5.3.16 Sound_Sensor .. 71
5.3.17 Sun_Radiation_Sensor... 72
5.3.18 Temperature_Sensor... 72
5.3.19 Threshold_Sensor ... 73
5.3.20 Fire_Sensor .. 73
5.3.21 Smoke_Sensor.. 74
5.3.22 Movement_Sensor .. 74
5.3.23 Complex_Sensor ... 75
5.3.24 Video_Camera .. 75
5.3.25 Appliance ... 76
5.3.26 Generator... 77
5.3.27 Storage.. 77
5.3.28 Load .. 78
5.3.29 User_Interface.. 78
5.3.30 Complex_Device ... 79
5.3.31 Concentrator .. 79
5.3.32 CDC... 80
5.3.33 MCC... 80

6. ONTOLOGY PROTOTYPE.. 82

7. CONCLUSIONS .. 83

ACKNOWLEDGEMENTS.. 84

REFERENCES ... 84

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 7

Abbreviations

CCA Cell Control and Actuation

CDC Cell Device Concentrator

CGS Cell Generation and Storage

CMM Cell Monitoring and Metering

CUI Cell User Interface

c2MCCi Cell Concentrator to Macro Cell Concentrator Interface

eDIANA Embedded Systems for Energy Efficient Buildings

EDP eDIANA Platform

iEi Intelligent Embedded Interface

MCC Macro Cell Concentrator

PwGRIDi Power Grid Interface

WWWi Internet Interface

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 8

Table of Figures

FIGURE 3-1 EDP REFERENCE ARCHITECTURE .. 14

FIGURE 3-2 EDIANA DEVICES EXAMPLES ... 16

FIGURE 5-1 INFORMATION LAYER... 41

FIGURE 5-2 SERVICE LAYER.. 51

FIGURE 5-3 DEVICE LAYER ... 62

FIGURE 6-1 ONTOLOGY FOR DEVICE AWARENESS... 82

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 9

1. Introduction

Once the basic architecture of eDIANA ecosystem has been defined, the next step is
to start with the modelization of the information that will flow through the different
modules that will be involved into that architecture.

Eventually, all the devices and sensors participating in the cell level as well as any
software application or module that could be part of the transversal middleware
platform will provide heterogeneous data in several heterogeneous protocols. Part of
that information is referred to the device awareness that Cell and MacroCell level
have to manage to hold a complete and dynamic scenario of components, services
and data flow.

Three semantic views or layers in the architecture are defined: semantic information,
services and devices. The idea is to define semantically (using ontologies), all the
actors (services and devices) involved in the eDIANA architecture.

There will be a semantic information layer which all involved devices (sensors,
actuators, smart meters, appliances …) can access to, through their services. This
access has to be defined and featured. In that semantic information layer there will
be a kind of database or repository with the ontologies to which devices can connect
and register themselves, more specifically services of the devices. The new services
and devices registered information will be transferred to the rest actors.

From the analysis and comparison of technologies, languages, libraries and tools
relating to device discovery and interoperability, an ontology prototype of the device
awareness will be defined.

This document contains the description of the obtained results and the analysis
process of the different aspects of the involved devices and modules. The
identification of the methodologies used to obtain the ontology prototype, is also
included.

The final objective of this document is to describe and explain the ontology for
device awareness in eDIANA Platform.

This ontology will be the main start point to build the transversal middleware which
would provide an homogeneous and common platform for all diverse devices,
sensors and applications involved into the eDIANA solution.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 10

2. Objectives of the ontology

Ontology is a description, a formal description of the concepts and relationships that
can exist for an agent or a community of agents, usually inside a specific domain. It
defines entities, properties, interactions, actors and basic concepts that compose the
common vocabulary for all members of the domain in which it is defined.

Ontologies are defined by classes, properties that describe various features and
attributes of classes and restrictions on these properties. Classes describe concepts
whereas subclasses represent concepts that are more specific. The development of
ontology usually includes:

• To define the classes of the ontology

• To arrange the classes hierarchically

• To define the properties and their possible values. Properties can be referred
to an only class or subclass or can be use to relate different classes.

However, at least as much important as what it is, is what it is for. Some frequent
uses of any ontology are:

• To share common understanding of the structure of information among
people or software agents

• To enable reuse of domain knowledge

• To make domain assumptions explicit

• To separate domain knowledge from the operational knowledge

• To analyze domain knowledge

One of the results of defining ontologies in a specific domain is the definition of a
framework where most of the disciplines, technologies that will be involved in the
domain can adopt the universe defined in the ontology. It can be the start point to
several technologies, applications and software that use the ontology as knowledge
base to other objectives.

The main objective of this ontology is to define the universe of concepts or classes
and their relations in the domain of eDIANA Platform Architecture, related to device
awareness. The eDIANA Platform Architecture provides a wide and heterogeneous
list of devices in hierarchical levels: MacroCell and Cell. To allow the scalability of the
architecture, the replacement, suppression or inhibition of architecture elements is
essential the knowledge of the context in which each element is, their relevant
characteristics to other elements as well as how they interact with other elements.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 11

3. Analysis

At this moment of the project, a preliminary architecture for EDP, at cell level, could
be defined from which to start the ontological analysis. To do this definition, we will
take into account three main aspects of the system:

3.1 Basic functionalities and elements

The eDiana Platform is understood as a loosely coupled application to be deployed in
a distributed fashion. Its functionalities will be compiled and grouped using the
classical three-tier software architecture: user interface, business logic layer and data
access layer.

Several basic functionalities may be identified for each tier.

User Interface

Regarding to each EDP deployment or scenario, a simple HMI could display data in a
summarized way or, while scaling up, more sophisticated and capable HMI could be
used.

• Display the current active loads: One of the keys on the EDP is the electrical
load management in accordance to some energy efficiency algorithms; in this
context, it seems reasonable to have the possibility to check and verify the
status of the loads involved in the scenario.

• Display the comfort conditions: EDP is designed to be deployed both on
residential buildings and non-residential buildings, in both cases awareness of
environmental conditions and the settings imposed by the user may become
key issues.

• Display the overall consumption/generation: Not only the active loads but the
overall consumption/generation of the managed scenario is data to be made
available for the users. This means that the user should know its
consumption vs generation ratio.

• Display Energy Market Conditions: eDiana Platform as being and
interoperative platform with utility companies or other energy pricing
authorities should display each time the active pricing profile

• Modify the comfort standards: The platform will provide mechanisms to
modify the comfort set values for a scenario or part of it.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 12

• Modify set values for load management: The platform infrastructure will be
able to give the capability for modifying the set values for load management
of a scenario or any part of it.

Business Logic Layer

This layer includes the functionalities regarding the control strategies, energy
constraints imposed by the utility companies or users willing and the possible
interfaces with higher entities.

• Energy Efficient Comfort management algorithms: The so called BLL will
include EE comfort management algorithms, which will perform an integrated
lighting, loads and HVAC management.

• Demand side management algorithms: The EDP as an energy management
platform will react to energy constraints and real time price signals imposed
by the utility companies or by the grid switching configuration. Once these
constraints are in place, load management algorithms will decide when and
how to switch-off or pause or reactivate the loads.

• Energy management policy: The EDP as part of an infrastructure that may
include distributed renewable energy generation and a smart grid
environment, will decide, on the basis of user policy, utilities and grid
constraints, and real time prices how to coordinate the parallel utilization of
loads and of local generation (both thermal and electrical)

• High Level Communication with utility companies: As being in direct contact
with the utilities companies and/or energy suppliers, the applications built in
the platform should be able to establish a communication with them in order
to negotiate or exchange all the information required to optimize the energy
utilization and to trade off the best mix between energy utilization and
generation..

• Energy Consumption predictive models: In order to enhance the energy
efficient management, the algorithms that will manage loads, generation, if
available and comfort conditions, will relay also on energy consumption
prediction models. These models may be based on the mathematical
formulation, typically via neural network approach, of consumption patterns or
time series (similar day’s technique for example) and load profiling.

• Scheduled Occupancy and Forecast: Includes the access to scheduled use of
the managed scenario and weather forecast to improve the accuracy of the
management algorithms.

Data Access Layer

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 13

This point does not only include the functionalities commonly understood as DAL
duties and infrastructures, but it also takes care about the low level communication
processes. In fact the DAL should be understood as the layer in which the BLL relies,
including both hardware and software platforms.

• Get and Set data from sensors and actuators: Some daemons are needed to
manage the communication flow towards and from the sensors and actuators
to some concentrator units or data brokers. The detailed list and description of
sensing and actuating requirements, involved in the platform will be done in
task T1.4, nevertheless some of them are immediately foreseen:

o Indoor & Outdoor temperature sensors

o Relative Humidity sensors

o Sun radiation

o Lighting sensors

o People presence sensors

o Air flow sensors

o Light dimming actuators

o Blind actuators

• Interface with electrical loads to switch them on/off: In order to react to
constraints imposed by the utility companies, user preferences, grid
configuration or other, it becomes necessary to know not only the
consumption level of the internal electrical loads, but also have the capability
to send orders to them.

• Real time gathering Real time data gathering strategies implementation would
be needed. As the provision of runtime data for BLL is the main goal of the
DAL the data refreshment ratio necessary for the BLL algorithms will somehow
be a requirement for gathering strategies.

3.2 Identified components - devices

eDIANA Platform Architecture does not define exactly explicit devices, but it defines
components that can be integrated as an only device o as a part of a device. Any
device likely to be part of eDIANA Platform must be categorized as one or more
components of eDIANA Platform and be compliant with their associated requirements
and characteristics, providing in that way a future integration of a wide variety of
devices.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 14

Because of the goal of this work is the definition of an ontological structure for the
device awareness, the identification of the components involved in the EDP
architecture, as well as their attributes and behaviour, is fundamental.

The identified eDIANA Platform Components are:

• MacroCell Level Components:

o MacroCell Level Concentrator (MMC)

o Data gathering Component

o Control Strategies

• Cell Level Components:

o Cell level Monitoring and Metering (CMM)

o Cell level Control and Actuation (CCA)

o Cell level User Interface Channels (CUI)

o Cell level Generation & Storage (CGS)

o Cell level Concentrator (CDC)

Figure 3-1 EDP reference architecture

EDP

eDiana Platform

iEi

c2MCCi

WWWi PwGRIDi

MCC
Macro Cell Concentrator

CDC
Cell Device Concentrator

CGS
Cell Generation and Storage

CCA
Cell Control and Actuation

CMM

Cell Monitoring and Metering

Local Environment

External Environment

iEi iEi

CUI
Cell User Interface

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 15

The development of the ontology has focused on the components of the Cell level,
analyzing them deeply, mainly the characteristics that they must fulfil related to
device awareness. The ontology classes, subclasses, properties and relations will
describe how these components interact to establish a known context

Next, some examples of devices that can be integrated in eDIANA Platform.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 16

Figure 3-2 eDIANA devices examples

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 17

These devices examples can be mapped to only one component or to several of
them. For example, a smart appliance must fulfil the characteristics and behaviour of
different eDIANA components, because it can be at the same time a monitoring
component and an actuation component. An iEi device with a built-in PSC must be
compliant with the definition of monitoring and control and actuation components.

3.3 Communication and interfaces

Although the lower layers of the communication networks stacks used in EDP are not
interesting for the ontological analysis, however the identification of the protocols to
be used by the different system components/devices can provide a complete vision
of the communications in the whole platform.

Each device will propose its own protocol, standard or proprietary, but for all devices
of Cell Monitoring and Metering (CMM), Cell Control and Actuation (CCA) and Cell
Generation and Storage (CGS) that do not support the iEi protocol, a “gateway”, a
software running on Cell Device Concentrator (CDC) will generate missing
information to be compliant with iEi protocol.

There have been identified some interfaces in eDIANA Platform, although we will
only considerate those related to the device awareness in the ontology. This device
awareness is focused at Cell level because is in that level where the diversity of
devices is not fixed, neither their presence assured. It is at Cell level where the
knowledge of the environment composition in a dynamical way is essential because
of its changeability, whereas the structure of the MacroCell is more fixed as well as
its interaction with Cell level.

Identified eDIANA interfaces:

• iEi: Intelligent Embedded Interface. It is the union of a PCS and an interface
which connects to the CDC. This interface is in charge of the information
interchange between sensors / transceivers and CDC

• C2CMCi: Concentrator to MacroCell Concentrator Interface.

• WWWi: This interface comprises the access to eDIANA Platform from internet

• PwGRIDi: this interface comprises the information interchange between
eDIANA Platform with the Power Grid.

The interface that will be considered inside the device awareness ontology will be iEi,
because is the interface that is in charge of the communication between Cell level
elements.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 18

3.4 Device awareness in middleware.

This section will analyze briefly several middleware that consider in their specification
the context or device awareness and how they face it.

3.4.1 OSGi

The Framework forms the core of the OSGi Service Platform Specifications. It
provides a general-purpose, secure, and managed Java framework that supports the
deployment of extensible and downloadable applications known as “bundles” [20].

OSGi-compliant devices can download and install OSGi bundles, and remove them
when they are no longer required. The Framework manages the installation and
update of bundles in an OSGi environment in a dynamic and scalable fashion. To
achieve this, it manages the dependencies between bundles and services in detail.

It provides the bundle developer with the resources necessary to take advantage of
Java’s platform independence and dynamic code-loading capability in order to easily
develop services for small-memory devices that can be deployed on a large scale.

The functionality of the Framework is divided in the following layers:

• Security Layer

• Module Layer

• Life Cycle Layer

• Service Layer

• Actual Services

The part of the specification that is more interesting to the issue that this document
deals is the Service Layer. In this layer, services can register, receive notifications,
change their status and be searched.

Next list describe some services specification related to context and device
awareness that OSGi Framework provides:

• Log Service Specification: this specification defines a general-purpose
message logger inside the OSGi Service Platform. This specification establishes
two services, one for logging information and another for retrieving previous
logged information. The specification summarizes the methods and interfaces
of the services bundle developers will use to log entries and retrieve them.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 19

• Device Access Specification. This service specification allows the
interconnection between services and devices of different vendors. It is a
meeting point to add and cancel subscription to services. It supports the
coordination of automatic detection and attachment of existing devices on an
OSGi Platform, as well as facilitates hot-plugging and -unplugging of new
devices, and downloads and installs device drivers on demand.

• Communication Admin Service Specification. It allows an Operator to set the
configuration information of deployed bundles. Configuration is the process of
defining the configuration data of bundles and assuring that those bundles
receive that data when they are active in the OSGi Service Platform.

• Preference Service Specification. This service specification helps to have some
data persistently in the system when some bundle stops and starts. The data
can be related to the system or to a particular user of the service.

• Wire Admin Service Specification. The Wire Admin helps to reduce the amount
of context-specific knowledge required by bundles when used in a large array
of configurations. It can be said that it dynamically wires services together.
Bundles participate in this wiring process by registering services that produce
or consume data. The Wire Admin service wires the services that produce
data to services which consume data.

• UPnP Device Service Specification. It specifies how OSGi bundles can be
developed that interoperate with UPnP™ (Universal Plug and Play) devices
and UPnP control points.

3.4.2 KNX

KNX is a standardized (EN 50090,ISO/IEC 14543), OSI-based network
communications protocol for intelligent buildings. KNX is the successor to, and
convergence of, three previous standards: the European Home Systems Protocol
(EHS), BatiBUS, and the European Installation Bus (EIB). The KNX standard is
administered by the Konnex Association.

KNX protocol defines several physical layers or combinations of them:

• Twisted pair cabling

• PowerLine

• RadioFrencuency

• IP enabled media like Ethernet, Bluetooth, WiFi, and IEEE 1394

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 20

However, it does not specify any hardware platform that the devices must adopt.
Depending on the chosen profile, the manufacturer can develop really tiny systems
with a footprint less than 5kb that can run on systems based on 8-bit processors.

One main concept of KNX protocol is “Datapoint”, this term represent the process
and control variables in the system. This Datapoint can be inputs, outputs,
parameters, diagnostic data, etc. The Communication System and Protocol offers a
reduced instruction set to read and write these Datapoint values. An application can
be seen as a collection of sending and receiving Datapoints, distributed over a
number of devices.

The mechanism that makes the system works is the links between Datapoints in
different devices through a common identifier. One application in device A wants to
send a value, e.g. a sensor data, writes the value to a sending Datapoint. The device
sends a “write” message with the corresponding address and the value. A receiving
Datapoint with the same address will receive this value and inform its local
application.

There are types of binding Datapoints:

• Free Binding: the numerical value of the address has no semantic information
to the application and there is no a priori prescription on which Datapoints
may be linked to one another.

• Structured Binding: the numerical value of the address has no semantic
information to the application. The address value is free but the Datapoints
involved in the binding follow a precise pattern, usually corresponding to a
Functional Block or Channel.

• Tagged Binding: part of the numerical value of the address is the semantic
(Datapoint) identifier. The logical tag or zonning part of the address selects
the intended communication partner(s) at the level of the device.

The specification provides several types of Datapoints:

• Datapoint types for common use

• Datapoint types for HVAC

• Datapoint types for Load Manager

• Datapoint types for Lighting

• Datapoint types for System

• Specialized Datapoints: Parameters

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 21

Previous to the configuration of the devices, some identification mechanisms are
provided:

• Devices may be identified and subsequently accessed throughout the network
either by their individual address, or by their unique serial number, depending
on the configuration mode.

• Installation's extendibility and maintenance is considerably eased through
product identification (i.e. a manufacturer specific reference) and functional
identification (manufacturer independent) information retrievable from
devices.

Mechanisms are defined around the unique serial number feature to

• get individual address of a device with a given serial number (so providing
further access)

• set individual address of a device with a given serial number

• retrieve serial number of a device at a given individual address

To address many diverse needs, the KNX specification includes a toolkit of
management features enabling the choice between several configuration modes,
each adapted to different markets, local habits, level of training needed or
application environment.

The specification ensures some degree of freedom for the manufacturer, whilst
guaranteeing consistency and Interworking in one mode, even in a multivendor
context. All configuration modes include provisions in order to extend or modify the
installation using the same mode.

• System Mode: The devices that implement this mode offer the most versatile
and multi-usage configuration process, while permitting a compact
implementation: the complexities of binding and application configuration are
shifted to a powerful configuration master. Traditionally this role is taken on
by a set of PC based tools from the ETS family, supplied by the KNX
Association. A database representing all possible functionalities of the devices
(or products) it supports by this tool, and it is maintained by the
manufacturers. Some features of this tool are:

o Binding: setting the group addresses in order to enable group object
communication between the Functional Blocks. Group objects may be set
into relationship if they share the same Datapoint type. The possibly
complex address and indirection tables are constructed by the
configuration master (like ETS), and downloaded into the device.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 22

o Parameterisation: setting the parameters of the devices according to the
documentation of the manufacturer.

o Download of application program is also possible for multi-purpose devices
exhibiting this special feature.

• Controller Mode: This mode is defined to support installation of a limited
number of devices on one logical segment of a physical medium. An
installation using the controller mode will comprise one special device called
controller that is in charge of supporting the configuration process. The
controller supports one or more applications (e.g. lighting). At configuration
time, the role of the controller is to establish the links between the so-called
“channels”, which represent the set of group objects for the given
functionality. The links and parameters are identified by an action of the
installer, which may be different from one controller manufacturer to another.
However, the set of channels supported by the KNX specification is uniquely
specified, and therefore any device from any manufacturer will be taken into
account by any controller from another manufacturer. The controller does not
need to have any knowledge of the functionalities supported by the devices.
This functionality can be read out of the devices by the controller and is “hard
coded” in the called “Device Descriptor #2” implemented by each device.
Following the instructions of the installer, the controller assigns individual
addresses to the devices, calculates the links at Datapoint level using known
rules which are part of the specification, and sets the parameters which are
available for the considered devices.

• Push-Button Mode: This mode is defined to support installation of a limited
number of devices on one logical segment of a physical medium. There is no
need for a specialised device for configuration, therefore each device
implementing the push button mode shall include the means of configuration
related to its application. The devices implement fixed parametrical
functionalities as described in the corresponding application specifications.
Each device is provided with the ability to be dynamically configured by
setting the needed individual and group addresses and parameters. Exchange
of parameters is also possible, but will be mainly local on the devices. At
configuration time, the installer successively designates the devices the
functions of which will be linked (therefore the name push button), the way
he does it is manufacturer dependent. The exchange of configuration data
occurring between devices, typically sensors and actuators, is made trough a
single application layer service. Each sending Datapoint device acquires itself
its unique group address. This address will be given to the receiving
Datapoints using the pushbutton procedure.

• Logical Tag Extended Mode: Device configuration is made using tags set
locally by physical means. For the time being, Logical Tag extended is limited

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 23

to HVAC applications, which need longer set of structured data. These data
are exchanged via interface objects using the extended frame of the KNX
protocol. Exploiting the extended address space, the tags represent powerful
zoning information, which is essential in modular structured applications (e.g.
heating of big buildings).

3.4.3 ZigBee (Home Automation Public Application Profile)

The Home Automation Public Application Profile defines device descriptions and
standard practices for applications needed in a residential or light commercial
environment. Installation scenarios range from a single room to an entire home up to
20,000 square feet (approximately 1850m2). The key application domains included in
this initial version are lighting, HVAC, window shades and security. Other applications
will be added in future versions [21].

Device descriptions specified in this profile are organized according the end
application areas they address. A product that conforms to this specification shall
implement at least one of these device descriptions and shall also include the device
descriptions corresponding to all applications implemented on the product where a
standard device description is specified in this profile.

A product that conforms to this specification shall implement at least one of these
device descriptions and shall also include the device descriptions corresponding to all
applications implemented on the product where a standard device description is
specified in this profile.

The specified devices until now are:

• Generic:

o On/Off Switch

o Level Control Switch

o On/Off Output

o Level Controllable Output

o Scene Selector

o Configuration Tool

o Remote Control

o Combined Interface

o Range Extender

o Mains Power Outlet

• Lighting:

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 24

o On/Off Light

o Dimmable Light

o Color Dimmable Light

o On/Off Light Switch

o Dimmer Switch

o Color Dimmer Switch

o Light Sensor

o Occupancy Sensor

• Closures:

o Shade

o Shade Controller

• HVAC:

o Heating/Cooling Unit

o Thermostat

o Temperature Sensor

o Pump

o Pump Controller

o Pressure Sensor

o Flow Sensor

• Intruder Alarm Systems:

o IAS Control and Indicating Equipment

o IAS Ancillary Control Equipment

o IAS Zone

o IAS Warning Device

The ZigBee Cluster Library provides a mechanism for clusters to report changes to
the value of various attributes. It also provides commands to configure the reporting
parameters. The attributes that a particular cluster is capable of reporting are listed n
the ZCL specification for each cluster.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 25

The functionality made available by all supported clusters shall be that given in their
ZCL specifications except where a device description in this profile includes further
specification, clarification or restriction as needed for that particular device.

The Clusters used in HA Profile are:

• General

o Basic

o Power Configuration

o Device Temperature Configuration

o Identify

o Groups

o Scenes

o On/Off

o On/Off Switch Configuration

o Level control

o Alarms

• Measurement & Sensing

o Iluminance Measurement

o I luminance Level Sensing

o MTemperature Measurement

o Pressure Measurement

o Flow Measurement

o Relative Humidity Measurement

o Occupancy sensing

• Lighting

o Color Control

• HVAC

o Pump Configuration and Control

o Thermostat

o Fan Control

o Thermostat User Interface Configuration

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 26

• Closures

o Shade Configuration

• Security and Safety

o IAS ACE

o IAS Zone

o IAS WD

Many, if not all of the devices described in this profile will require some form of
commissioning, even if the user or installer does not see it. This is because, for
example, an actuating device needs to be bound to some sort of target in order to
do useful work, and even if the required initializations are done at the factory before
the device is sold, the required operations are virtually the same as is the outcome.

HA devices must form their own network or join an existing network. It is intended
that an HA network use simple methods to form a network and to commission
devices into it. The primary means of commissioning a network will use E-mode
methods (button presses or similar user actions) to get nodes to join a network.

This specification has no mandates to the start-up sequence of devices or the
network, however, there are some recommended practices:

• A device should be able to indicate to the user that it has decided to become
the coordinator of a network.

• A device should be able to indicate to the user, that it has successfully joined
a network.

• A device should be able to indicate to the user, that it is in the process of
searching for or joining a network.

All HA devices must support E-mode and may optionally support S-mode. A-mode is
not to be supported. E-mode commissioning may be a simple button press or may
involve a separate low-cost commissioning tool (like a remote control) that is
typically purchased with the vendor.s HA product.

All ZigBee HA devices are required to provide documentation with their product that
explains how to perform device commissioning in using a common language set:

• Join Network: Go find and join the first available HA network.

• Form Network: For devices that can start a network.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 27

• Allow Others to Join Network: For routers and coordinators only. Allows you
can add more nodes to an existing network. This must have a mandatory
timeout of 60 seconds.

• Restore to Factory Fresh Settings: Restore the device settings to fresh state
(also performs leave).

• Pair Devices (End Device Bind Request): Bind to any device you can find
matching clusters on. This will toggle the bind each time you do it. The ZigBee
coordinator does the pairing.

• Enable Identify Mode: Sets the device in Identify mode for 60 seconds. This is
used for adding devices to a group or create a scene.

• Group Nodes: Used to add devices to a group. This action sends the .Add
group if Identifying. command. This adds all devices that are in .identify
mode. to the group. The group ID is picked by the implementer.

• Create Scene: This action creates a scene using devices present in a group.

A device that implements the Identify client cluster must implement means for a user
interaction to perform E-mode group commissioning initiated from that device. By
user interaction on that device, the device shall be possible to:

• Set matching devices in identify mode.

• Perform group binding on selected matching devices.

An example of such an implementation could be:

The user interacts with a device implementing the Identify client cluster to make it
enter E-mode group commissioning. When this mode is entered, the device performs
the following:

• Find devices on the network that match services of a cluster on the device.

• Put the matched devices in identify mode one at a time.

• When a user interaction is performed, the device currently identifying is made
subject to a group binding.

3.4.4 CORBA

CORBA, or Common Object Request Broker Architecture, is a standard architecture
for distributed object systems. It allows a distributed, heterogeneous collection of
objects to interoperate. The Object Management Group (OMG) is responsible for

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 28

defining CORBA. The OMG comprises over 700 companies and organizations,
including almost all the major vendors and developers of distributed object
technology, including platform, database, and application vendors as well as software
tool and corporate developers [22].

CORBA defines an architecture for distributed objects. The basic CORBA paradigm is
that of a request for services of a distributed object. Everything else defined by the
OMG is in terms of this basic paradigm.

The services that an object provides are given by its interface. Interfaces are defined
in OMG's Interface Definition Language (IDL). Distributed objects are identified by
object references, which are typed by IDL interfaces.

Three elements make possible the CORBA Architecture [23]:

• An object manager called ORB (Object Request Broker)

• Mechanisms to specify the interfaces: IDL (Interface Definition Language) and
DII (Dynamic Invocation Interface)

• Binary protocols that will allow the communication between the ORBs: GIOP
(General Inter-ORB Protocol) and IIOP (Internet Inter-ORB Protocol)

The ORB is the distributed service that implements the request to the remote object.
It locates the remote object on the network, communicates the request to the
object, waits for the results and when available communicates those results back to
the client.

The ORB implements location transparency. Exactly the same request mechanism is
used by the client and the CORBA object regardless of where the object is located. It
might be in the same process with the client, down the hall or across the planet. The
client cannot tell the difference.

CORBA 2.0 added interoperability as a goal in the specification. In particular, CORBA
2.0 defines a network protocol, called IIOP (Internet Inter-ORB Protocol), that allows
clients using a CORBA product from any vendor to communicate with objects using a
CORBA product from any other vendor. IIOP works across the Internet, or more
precisely, across any TCP/IP implementation.

All CORBA based applications need to access to the IDL system type when they are
running. This is necessary because the application need to know the types of value
that are going to be used as request parameters. In the same way, the application
must know all supported interface types that the objects use.

Some applications only need a static knowledge of the IDL system type, the IDL
specification is compiled into the application programme language. However, other

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 29

applications are unable to adopt this static definition of the interface. CORBA
provides another method to define interfaces to these applications. The interfaces
can be added to an interface repository service. This repository defines the
operations to recover stored information at run-time. A client, using this interface
registry can localize an unknown object in compilation time, ask for its interface and
build a request to the ORB.

Another important part of the CORBA standard is the definition of a set of distributed
services to support the integration and interoperation of distributed objects. The
services, known as CORBA Services or COS, are defined on top of the ORB. That is,
they are defined as standard CORBA objects with IDL interfaces, sometimes referred
to as "Object Services." [22]:

• Object life cycle: Defines how CORBA objects are created, removed, moved,
and copied

• Naming: Defines how CORBA objects can have friendly symbolic names

• Events Decouples: the communication between distributed objects

• Relationships: Provides arbitrary typed n-ary relationships between CORBA
objects

• Externalization: Coordinates the transformation of CORBA objects to and from
external media

• Transactions: Coordinates atomic access to CORBA objects

• Concurrency Control: Provides a locking service for CORBA objects in order to
ensure serializable access

• Property: Supports the association of name-value pairs with CORBA objects

• Trader: Supports the finding of CORBA objects based on properties describing
the service offered by the object

• Query: Supports queries on objects

3.5 Ontology languages

3.5.1 KEE

KEE is frame-based expert system, developed and marketed by Intellicorp in 1980's.
Supports dynamic inheritance, multiple inheritance, polymorphism. Classes, meta-

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 30

classes and objects are all treated alike. A class is an instance of a meta-class.
Methods are written in LISP. Actions may be triggered when fields are accessed or
modified. Extensive GUI integrates with objects. Can easily make object updates to
be reflected on display or display selections to update fields. This can in turn trigger
other methods or inference rules which may then update other parts of the display
(Knowledge Engineering Environment (KEE), [2]).

3.5.2 KL-ONE

The first formalization of a semantic network based on logic was the frame-based
language KL-ONE. It is the first description logic because, in addition to supporting
frame representation, it was formalized logically with description-forming structures
[3]. The primary unit of information corresponding to frame in KL-ONE is called a
“concept”, which denotes a set of objects. A Concept has a set of (syntactic)
components, each denoting a property that must be true of each member of the set
denoted by the “Concept”. In particular, one type of component is a Roleset which is
analogous to a "slot” in a "frame-like" language [4].

In the KL-ONE terminology a super class is said to subsume its subclasses by using
subsume-relations. All concepts, except the top concept “Thing”, must have at least
one super class. Multiple inheritance is allowed.

In KL-ONE, descriptions are separated into two basic classes of concepts: primitive
and defined (non-primitive). Primitives are domain concepts that are not fully
defined. In this case, the properties of a concept are not sufficient to classify it. They
may also be viewed as incomplete definitions. Defined concepts are complete
definitions. In this case, the properties of a concept are necessary and sufficient to
classify the concept.

Schmolze et al., explains primitive and non-primitive concepts by using sample
concepts such as PERSON and PARENT [4]. PERSON is a primitive concept denoting
the set of all persons. Primitive Concepts are interpreted as having essentially
incomplete definitions, and thus, all concepts denoting "natural kinds" (e.g., people,
elephants, chairs) are primitive.

• PERSON is a primitive Concept, is subsumed by

o MAMMAL, and has a Roleset Birthdate with:

� A number restriction of exactly one.

� A value description of DATE.

Non-primitive Concepts are interpreted as being completely defined. An example is
PARENT.

• PARENT is a non-primitive Concept, is subsumed by

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 31

o PERSON, and has a Roleset Child with:

� A number restriction of one or more.

� A value description of PERSON.

3.5.3 CLASSIC

CLASSIC is a knowledge representation (KR) system that follows the paradigm
originally set out in the KL-ONE system: it concentrates on the definition of
structured concepts, their organization into taxonomies, the creation and
manipulation of individual instances of such concepts, and the key inferences of
subsumption and classification [5].

The frames / concepts in CLASSIC are interpreted as descriptions rather than
assertions. So for wine concept, if wine is defined as a drink with a number of other
properties, then being a drink is a necessary part of being a wine, and no wine can
violate this requirement. There are three kinds of formal objects in CLASSIC [5]:

• “Concepts”, which are descriptions with potentially complex structure, formed
by composing a limited set of description-forming operators (e.g. WHITE-
FULL-BODIED-WINE).

• “Roles”, which are simple formal terms for properties (e.g. grape might
represent the grape(s) a wine is made from).

• “Individuals”, which are simple formal constructs intended to directly
represent objects in domain of interest.

3.5.4 KM

KM is a frame-based knowledge representation language with clear first-order logic
semantics. KM can be used for creating knowledge bases including descriptions of
things in the world as objects, events, properties and relationships; and descriptions
of the rules that allow us to reason about things in the world. It contains
sophisticated machinery for reasoning, including selection by description, unification,
classification, and reasoning about actions using a situations mechanism. KM
interpreter is implemented based on Lisp language and interpreter. The language is
developed and implemented by Knowledge Systems Research Group in Department
of Computer Sciences, The University of Texas at Austin. [6].

As an example, we can describe a frame in KM, showing the class "Buy", with its
slots and values (some of which are themselves frames) as below:

• All “buy” events have

o A “buyer” and a “seller” (both of type agent)

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 32

o An object which is bought

o Some money equal to the cost of the object

o Two "give" subevents, in which:

� The buyer gives the money to the seller

� The seller gives the object to the buyer.

This definition is represented in KM language as below:

(Buy has (superclasses (Event))) ; Properties of th e class ('owns'
properties)

(every Buy has ; Properties of its memb ers ('template'
properties)

 (buyer ((a Agent)))

 (object ((a Thing)))

 (seller ((a Agent)))

 (money ((the cost of (the object of Self))))

 (subevent1 ((a Give with

 (agent ((the buyer of Self)))

 (object ((the money of Self)))

 (rcpt ((the seller of Self))))))

 (subevent2 ((a Give with

 (agent ((the seller of Self)))

 (object ((the object of Self)))

 (rcpt ((the buyer of Self)))))))

3.5.5 F-logic

Michael Kifer ¡Error! No se encuentra el origen de la referencia. proposed a
language called F-logic (Frame Logic) that accounts in a clean and declarative
fashion for most of the structural aspects of object oriented and frame based
languages. These features include object identity, complex objects, inheritance,
polymorphic types, query methods, encapsulation and others. He claims that one of
the main problems with the object oriented approach is the lack of logical semantics
that traditionally has been playing an important role in database programming
languages while deductive databases rely on a flat data model and do not support
data abstraction. F-logic combines the two approaches ¡Error! No se encuentra el
origen de la referencia..

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 33

Major strengths of F-logic are extensibility and his capacities to directly represent
fundamental concepts that come from object oriented programming and frame based
languages. F-logic makes a number of central aspects of object oriented
programming to become compatible with logic paradigm. F-Logic main weakness is
related to mathematic and logic concepts needed to program in this language. F-
logic does not possess cardinality restrictions.

3.5.6 CycL

CycL is an ontology language used by Cyc project, an artificial intelligence project
that attempts to assemble a comprehensive ontology and knowledge base of
everyday common sense knowledge, with the goal of enabling AI applications to
perform human-like reasoning. The original version of CycL was a frame language,
but the modern version is a declarative language based on classical first-order logic,
with extensions for modal operators and higher order quantification. CycL has some
basic ideas:

• Naming the constants used to refer to information for represented concepts.

• Grouping the constants together in a generalization/specialization hierarchy
(usually called categorization).

• Stating general rules that support inference about the concepts.

• The truth or falsity of a CycL sentence is context-relative; these contexts are
represented in CycL as Microtheories.

It has six expression types: Constants, Formulas and Truth-function, Function-
denotional, Variables and Quantifiers. CycL's major strengths are expressiveness,
precision, meaning and use-neutral representation and it is major weakness is the
focus within the Cyc project has been on the engineering of large common sense
knowledge bases, and not on the advancement of deductive reasoning technology.

3.5.7 LOOM

Loom is a language and environment for constructing intelligent applications. The
heart of Loom is a knowledge representation system that is used to provide
deductive support for the declarative portion of the Loom language. Declarative
knowledge in Loom consists of definitions, rules, facts, and default rules. A deductive
engine called a classifier utilizes forward-chaining, semantic unification and object-
oriented truth maintenance technologies in order to compile the declarative
knowledge into a network designed to efficiently support on-line deductive query
processing [8].

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 34

3.5.8 KIF

KIF (Knowledge Interchange Format) is a computer-oriented language for the
interchange of knowledge among disparate programs. It has declarative semantics
(i.e. the meaning of expressions in the representation can be understood without
appeal to an interpreter for manipulating those expressions); it is logically
comprehensive (i.e. it provides for the expression of arbitrary sentences in the first-
order predicate calculus); it provides for the representation of knowledge about
knowledge [9].

3.5.9 Ontolingua

Ontolingua was created in 1992 at Stanford University and it's a language based in
KIF (Knowledge Interchange Format). Combines frames paradigm and first order
predicates. Beyond all the languages used to represent ontologies, Ontolingua
language is the one with the biggest expressiveness. It can represent concepts,
concepts taxonomies, n-ary relationships, axioms, instances and procedures.
Ontolingua doesn't permit reasoning [10].

3.5.10 SHOE

SHOE was developed in 1996 at University of Maryland and stands for Simple HTML
Ontology Extensions. SHOE is a small extension to HTML which allows web page
authors to annotate their web documents with machine-readable knowledge. SHOE
makes real intelligent agent software on the web possible. SHOE is a language in
which categories, relationships, attributes, inferences, etc. can be defined by
ontologies, but SHOE itself does not define them. This is the job of ontology
designers for specific tasks or domains. SHOE was designed with the needs of the
web in mind. It has limited semantics to make it possible to handle large amounts of
data. However, simple database semantics are not enough for web data. SHOE
provides true knowledge-base semantics. It has a variety of mechanisms that try to
deal with the fact that the data out there is distributed and under no one's total
control [10].

3.5.11 RDF / RDFS

The Resource Description Framework (RDF) is a language for representing
information about resources in the World Wide Web. It is particularly intended for
representing metadata about Web resources, such as the title, author, and
modification date of a Web page, copyright and licensing information about a Web
document, or the availability schedule for some shared resource. However, by
generalizing the concept of a "Web resource", RDF can also be used to represent
information about things that can be identified on the Web, even when they cannot
be directly retrieved on the Web [11].

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 35

The underlying structure of any expression in RDF is a collection of triples, each
consisting of a subject, a predicate (also called a property) and an object [12].

RDF Schema (or RDFS) is an extensible knowledge representation language,
providing basic elements for the description of ontologies, otherwise called RDF
vocabularies, intended to structure RDF resources. The first version was published by
W3C in April 1998, and the final W3C recommendation was released in February
2004.

In addition to inheriting basic features from Frame Systems, RDFS provides ontology
constructs that make relations less dependent on concepts: users can define
relations as an instance of rdf:Property, describe inheritance relations between
relations using rdfs:subPropertyOf, and then associate defined relations with classes
using rdfs:domain or rdfs:range [13].

3.5.12 DAML+OIL

The DARPA Agent Markup Language (DAML) is a agent markup language developed
by the Defense Advanced Research Projects Agency (DARPA) for the semantic web.
The DAML language was developed as an extension to XML and the RDF.

RDF Schema (RDFS) in particular is recognizable as an ontology/knowledge
representation language: it talks about classes and properties (binary relations),
range and domain constraints (on properties), and subclass and subproperty
(subsumption) relations. RDFS is, however, a very primitive language (the above is
an almost complete description of its functionality), and more expressive power
would clearly be necessary/desirable in order to describe resources in sufficient
detail. Moreover, such descriptions should be amenable to automated reasoning if
they are to be used effectively by automated processes, e.g., to determine the
semantic relationship between syntactically different terms. The recognition of these
requirements has led to the development of DAML+OIL, an expressive Web ontology
language. DAML+OIL is the result of a merger between DAML-ONT, a language
developed as part of the US DARPA Agent Markup Language (DAML) programme and
OIL (the Ontology Inference Layer) [14].

3.5.13 OWL

OWL (Web Ontology Language), which has been developed by W3C Web Ontology
Working Group, is a formal knowledge representation language for defining
ontologies. OWL is extensively used in the life sciences community, where it has
rapidly become a de facto standard for ontology development and data interchange.
OWL has evolved primarily from Description Logics and frames.

In fact OWL recommendation includes three languages, namely OWL Lite, OWL DL,
and OWL Full, in the order of expressive power. Briefly, as stated by Antoniou [15]:

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 36

• OWL Lite adds the possibility to express definitions and axioms, together with
a limited use of properties to define classes;

• OWL DL supports those users who want the maximum expressiveness while
retaining good computational properties;

• OWL Full is meant for users who want maximum expressiveness with no
computational guarantees.

3.5.14 OWL Lite

OWL Lite is a variant of description logic languages. It can be seen as a variant of
SHIF(D) logic

Language. The SHIF(D) language allows complex class descriptions, including
conjunction, disjunction, negation, existential and universal value restrictions for
roles, role hierarchies, transitive roles, inverse roles, a restricted form of cardinality
restrictions (cardinality 0 or 1) and (limited) support for concrete domains [16].

If tractable inference and simple syntax is important than OWL Lite is the choice for
defining an ontology [17]. OWL Lite is a syntactic subset of OWL DL. Some of the
constructors and axioms allowed in OWL DL is not allowed, but it has been shown
that by using the allowed language constructs it is possible to maintain most of the
expressiveness of OWL DL [18].

3.5.15 OWL DL

OWL DL is the most well-known and researched variant of OWL languages. The only
descriptions in OWL DL that cannot be expressed in OWL Lite are those containing
individuals and cardinalities higher than one [16]. The extension from OWL Lite to
OWL DL lifts the restriction on cardinality constraints to have only 0/1 values.
Technically, it restricts the form of number restrictions to be unqualified, and adds a
simple form of Datatypes. From the perspective of language constructs, OWL DL
allows additional constructs on top of OWL Lite. Owl has closely the same
expressiveness as SHOIN(D) description language.

3.5.16 OWL Full

OWL Full is meant for the ones who want maximum expressiveness, syntactic
freedom, and full compatibility with RDF Schema, with no computational guarantees.
OWL Full provides a more complete integration with RDF, but its formal properties
are less well understood, and key inference problems would certainly be much
harder to compute. As being the most expressive species of OWL, it layers on top of
both RDFS and OWL DL. OWL Full is fully upward-compatible with RDF, both
syntactically and semantically: any legal RDF document is also a legal OWL Full

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 37

document, and any valid RDF/RDF Schema conclusion is also a valid OWL Full
conclusion.

3.5.17 OWL 2 – The Next Step

Although OWL 1 has been widely accepted by the industry, it had its shortcomings,
coming from its design. To tackle these problems a working group was formed in
W3C to settle down the revisions from the theoreticians, implementers and users.
The changes were first filed with the name OWL 1.1 but the changes were
substantial enough to call the language with a different name, namely OWL 2, which
addresses the shortcomings of OWL 1 in the following areas [19]:

• Expressivity Limitations

• Syntax Issues

• Metamodeling

• Annotations

• OWL Semantics

W3C Working Group continues to work on OWL 2, but there are some draft
specifications. Some tools like Protégé and Pellet supports OWL 2. The latest (as of
November 2008) of OWL 2 specifications is filed under
http://www.w3.org/TR/2008/WD-owl2-syntax-20081008/

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 38

4. Applied methodology.

In this chapter, it could be described which methodologies or tools will be used to
define the ontology prototype for device awareness.

It is not an only and correct way to develop ontologies, but almost in all the utilized
methodologies there are some basic rules that are fulfilled [19]:

• There is not one correct way to model a domain, there are always viable
alternatives. The best solution almost always depends on the application that
you have in mind and the extensions that you anticipate.

• Ontology development is necessarily an iterative process.

• Concepts in the ontology should be close to objects (physical or logical) and
relationships in your domain of interest. These are most likely to be nouns
(objects) or verbs (relationships) in sentences that describe your domain.

Following these rules, and applying them to the objective of modelling with this
ontology a specific part of the reality of eDIANA Platform, in particular de device
awareness between Cell level components and devices, the next steps have been
completed in some iterations. Nevertheless the explicitness that an ontology can
achieve is almost infinite,

4.1 Determine the domain and scope of the ontology

The first step developing ontologies is to determine the domain and scope of the
ontology, to answer next questions can help to complete this task:

• What is the domain that the ontology will cover?

The domain of the ontology is clearly the eDIANA Platform, more specifically, the Cell
level, covering the knowledge of device awareness of this level components and
devices.

• For what we are going to use the ontology?

The main use of the ontology will be to provide a unified description of the domain to
all the members of the project, as well as to have a knowledge repository where
later works can be reflected.

• For what types of questions the information in the ontology should provide
answers?

The questions would be referred to topics like these:

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 39

o Environment understanding

o Types of components and devices

o Profiles of components and devices

o Identification of components and devices

o Ad-hoc detection

o Components and devices services

4.2 Enumerate important terms in the ontology

This step is a kind of brainstorming about all concepts involved in the domain,
without paying much attention to the relation between concepts, terms, etc. Once
establish a term, it is analyzed to discover more new issues that complete the
original term.

Next steps will be in charge of analyze those terms, concepts, issues and hierarchize
them.

4.3 Define the classes and the class hierarchy

It has been selected a top-down development process for the first iteration, starting
from the eDIANA Platform and the most high level: MacroCell, to the next level: Cell.

In this step, all the terms provided by previous step have been categorized into
classes, and these classes organized in the resultant hierarchy. During this step the
analysis of the proposed terms causes the addition of more related concepts.

Following iterations have combined top-down and down-top processes in order to
find missing concepts.

4.4 Define the properties of classes—slots

In this step, the analysis has gone deep into the classification of the terms, finding
out which of them correspond better to properties of classes, than to relational
classes or entities themselves.

This step has been made at the same time as the definition of the classes and their
hierarchy. Sometimes, the discovering of a new property caused the definition of
classes or subclasses, this is the reason because several iterations have been made
through each class and properties.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 40

4.5 Define the facets of the properties

This step has consisted of defining more precisely the characteristics, features or
facets of the properties of the classes, including relational properties and feature
properties.

The most common values of the facets are:

• String

• Number

• Boolean

• Enumerated

• Ranges

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 41

5. Semantic structure of the ontology.

After the analysis, this chapter could contain the obtained results. The detailed
description of the semantic structure or architecture based on three layers o views:
information, services and devices.

The following section will cover these three semantic layers, defining the semantics
of each concept in the ontology. Additionally, each section is provided with a tree
diagram showing the concept taxonomy of the eDIANA context awareness ontology.
Relations between classes are described in detail in the description of each ontology
node.

5.1 Information layer.

The information layer of the eDIANA ontology for device awareness contains
different categories of information that will be referenced by the elements defined in
the other two layers, namely services layer and devices layer. The elements
contained in this layer will be described in the following sections.

Figure 5-1 Information layer

5.1.1 Information

The Information class is the top level class of the information layer.

Generalizations

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 42

• Thing

Object Properties

None

Data Properties

None

Restrictions

None

5.1.2 Direction_Information

The Direction_Information class is the top level class for the classes that describe the
semantic direction of the data in a user interface device.

Generalizations

• Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.3 Input_Information

The Input_Information class provides the semantics of a user interface device
intended for providing information to the CDC.

Generalizations

• Direction_Information

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 43

Object Properties

None

Data Properties

None

Restrictions

None

5.1.4 Output_Information

The Output_Information class provides the semantics of a user interface device
intended for rendering information obtained from the CDC.

Generalizations

• Direction_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.5 Comfort_Variable_Information

The Comfort_Variable_Information class is the top level class for the classes that
describe the semantics of the different comfort variables addressed in the eDIANA
user policies. These classes will be referenced by actuators, sensors and appliances.

Generalizations

• Information

Object Properties

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 44

None

Data Properties

None

Restrictions

None

5.1.6 Humidity_Information

The Humidity_Information class refers to a simple device (actuator, sensor or
appliance) directly or indirectly related with the humidity comfort property (e.g.
humidity sensors, dehumidifiers, etc.). This information will make the CDC aware of
the fact that this component provides information usable by the control algorithms
related to humidity.

Generalizations

• Comfort_Variable_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.7 Luminosity_Information

The Luminosity_Information class refers to a simple device (actuator, sensor or
appliance) directly or indirectly related with the luminosity comfort property (e.g.
lighting sensors, lamps, blinds, etc.). This information will make the CDC aware of
the fact that this component provides information usable by the control algorithms
related to luminosity.

Generalizations

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 45

• Comfort_Variable_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.8 Noise_Information

The Noise_Information class refers to a simple device (actuator, sensor or appliance)
directly or indirectly related with the noise comfort property (e.g. sound sensors,
noisy appliances such as washing machines, etc.). This information will make the
CDC aware of the fact that this component provides information usable by the
control algorithms related to noise.

Generalizations

• Comfort_Variable_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.9 Temperature_Information

The Temperature_Information class refers to a simple device (actuator, sensor or
appliance) directly or indirectly related with the temperature comfort property (e.g.
thermometers, heating systems, air conditioning systems, etc.). This information will

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 46

make the CDC aware of the fact that this component provides information usable by
the control algorithms related to temperature.

Generalizations

• Comfort_Variable_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.10 Smart_Actuator_Command_Information

The Smart_Actuator_Command_Information class is the top level class for the
classes that define the semantics of the different command types that a smart
actuator could process.

Generalizations

• Information

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 47

5.1.11 Change_Configuration_Command_Information

The Change_Configuration_Command_Information class categorizes the commands
related with configuration changes.

Generalizations

• Smart_Actuator_Command_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.12 Change_Parameter_Command_Information

The Change_Parameter_Command_Information class is a kind of configuration
change command. Specifically, this class refers to a concrete configuration change
that affects a concrete parameter of the smart actuator, such as the selected
program in a washing machine.

Generalizations

• Change_Configuration_Command_Information

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 48

5.1.13 Switch_Mode_Command_Information

The Switch_Mode_Command_Information class is a kind of configuration change
command. Specifically, this class refers to a concrete configuration change that
affects operating mode of the smart actuator, such as low power mode.

Generalizations

• Change_Configuration_Command_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.14 Delayed_Turn_Off_Command_Information

The Delayed_Turn_Off_Command_Information class refers to a command capable of
setting an actuator to turn off a device at a given moment in time.

Generalizations

• Smart_Actuator_Command_Information

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 49

5.1.15 Delayed_Turn_On_Command_Information

The Delayed_Turn_On_Command_Information class refers to a command capable of
setting an actuator to turn on a device at a given moment in time.

Generalizations

• Smart_Actuator_Command_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.1.16 Turn_Off_Command_Information

The Turn_Off_Command_Information class refers to a command intended to turn a
device of the platform off.

Generalizations

• Smart_Actuator_Command_Information

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 50

5.1.17 Turn_On_Command_Information

The Turn_On_Command_Information class refers to a command intended to turn a
device of the platform on.

Generalizations

• Smart_Actuator_Command_Information

Object Properties

None

Data Properties

None

Restrictions

None

5.2 Service layer

The Service structure layer on the eDIANA Context Awareness ontology focuses on
the definition of the different interfaces present in eDIANA. This definition has been
made at a very high level, since the concrete definition of the interfaces hasn’t been
created yet; however, the structure proposed in this deliverable for the Service
structure layer can be easily extended during posterior phases of the project
maintaining consistency.

The classes defined in the Service structure layer will be further described in the
following sections.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 51

Figure 5-2 Service layer

5.2.1 Service

The Service class is the top level class of the services layer.

Generalizations

• Thing

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 52

5.2.2 External_Service

The External_Service class is the top level class of the services defined between the
eDIANA platform and external.

Generalizations

• Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.3 PwGRIDi_Service

The PwGRIDi_Service class provides the semantics of the interface between the
eDIANA platform and the power grid of an energy provider.

Generalizations

• External_Service

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 53

5.2.4 WWWi_Service

The WWWi_Service class provides the semantics of the interface between the
eDIANA platform and the Internet. More concretely, this class refers to the service
between the platform and an ISP.

Generalizations

• External_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.5 Internal_Service

The Internal_Service class is the top level class of the services defined between
components inside the eDIANA platform.

Generalizations

• Service

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 54

5.2.6 Internal_Service

The Internal_Service class is the top level class of the services defined between
components inside the eDIANA platform.

Generalizations

• Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.7 c2MCCi_Service

The c2MCCi_Service class provides the semantics of the interface between a Macro
Cell Concentrator and a Cell Concentrator or between two Macro Cell Concentrators.

Generalizations

• Internal_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.8 iEi_Service

The iEi_Service class provides the semantics of the interface between a Cell
Concentrator and any device connected to the Cell. This is only a top level class

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 55

further refined to define specific iEi services applicable to the different eDIANA
device types.

Generalizations

• Internal_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.9 Read_iEi_Service

The Read_iEi_Service class refers to all the iEi services intended to read a data value
from the remote device (e.g. data from a sensor, configuration parameters, etc.).

Generalizations

• iEi_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.10 Configuration_Read_iEi_Service

The Configuration_Read_iEi_Service class refers to services intended to get the
current configuration of a device.

Generalizations

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 56

• Read_iEi_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.11 UserData_Read_iEi_Service

The UserData_Read_iEi_Service class refers to services provided by user interface
devices to read the commands from the users.

Generalizations

• Read_iEi_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.12 Profile_Read_iEi_Service

The Profile_Read_iEi_Service class refers to the service intended to provide to the
Cell Concentrator the characteristics of a device inside a Cell.

Generalizations

• Read_iEi_Service

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 57

Object Properties

None

Data Properties

None

Restrictions

None

5.2.13 Status_Read_iEi_Service

The Status_Read_iEi_Service class refers to the iEi services intended to read the
current status of a remote device.

Generalizations

• Read_iEi_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.14 SensorData_Read_iEi_Service

The SensorData_Read_iEi_Service class refers to the iEi services intended to retrieve
a data value from a remote sensor device.

Generalizations

• Read_iEi_Service

Object Properties

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 58

None

Data Properties

None

Restrictions

None

5.2.15 Write_iEi_Service

The Write_iEi_Service class refers to all the iEi services intended to write data to the
remote device (e.g. actuator commands, new configuration parameters, etc.).

Generalizations

• iEi_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.16 LogData_Write_iEi_Service

The LogData_Write_iEi_Service class refers to the services intended to write log data
to the remote device (e.g. a web server, a database, etc.).

Generalizations

• Write_iEi_Service

Object Properties

None

Data Properties

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 59

None

Restrictions

None

5.2.17 Configuration_Write_iEi_Service

The Configuration_Write_iEi_Service class refers to all the iEi services intended to
modify the configuration parameters of a remote device.

Generalizations

• Write_iEi_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.18 Command_Write_iEi_Service

The Command_Write_iEi_Service class refers to all the iEi services intended to send
commands to remote actuator devices.

Generalizations

• Write_iEi_Service

Object Properties

None

Data Properties

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 60

Restrictions

None

5.2.19 Reset_Command_Write_iEi_Service

The Reset_Command_Write_iEi_Service class refers to an iEi service intended to
reset a remote device to its initial state.

Generalizations

• Command_Write_iEi_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.2.20 Smart_Command_Write_iEi_Service

The Smart_Command_Write_iEi_Service class refers to all the iEi services intended to
send commands to remote smart actuator devices.

Generalizations

• Command_Write_iEi_Service

Object Properties

None

Data Properties

None

Restrictions

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 61

None

5.2.21 Value_Command_Write_iEi_Service

The Value_Command_Write_iEi_Service class refers to all the iEi services intended to
send value commands to remote value driven actuator devices (e.g. percentage
valve opener, variable light actuator).

Generalizations

• Command_Write_iEi_Service

Object Properties

None

Data Properties

None

Restrictions

None

5.3 Device layer

The Device layer of the eDIANA ontology for device awareness contains different
categories of devices that compose the eDIANA platform. This taxonomy of devices
will enable device awareness services and plug-and-play services by characterizing
the devices, their properties and their interfaces. The elements contained in this
layer will be described in the following sections.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 62

Figure 5-3 Device layer

5.3.1 Device

The Device class is the top level class of the information layer.

Generalizations

• Thing

Object Properties

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 63

• provided_services: Service (multiple).

The provided_services property relates a device with the set
of services that it provides.

Data Properties

• location: string (single).

The location property provides the information of the location
where this device is placed.

Restrictions

None

5.3.2 Simple_Device

The Simple_Device class represents any kind of simple device types (namely sensor,
actuator, appliance and user interface).

Generalizations

• Device

Object Properties

None

Data Properties

None

Restrictions

None

5.3.3 Actuator

The Actuator class represents any kind of actuator devices, such as valve openers,
light switches, etc.

Generalizations

• Simple_Device

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 64

Object Properties

• related_appliance: Appliance (single).

The related_appliance property relates the actuator device
with the appliance (e.g. motor, washing machine, lamp, etc.)
this actuator affects to.

• related_comfort_properties: Comfort_Variable_Information (multiple).

The related_comfort_properties property relates an actuator
with any comfort variables that depend on it. This information
will be used by the CDC to be able to apply different control
algorithms to the different actuators, sensors and appliances
taking into account their dependencies with user comfort
parameters.

Data Properties

None

Restrictions

[1] An actuator may only include in its provided_services property services from
the following list: Profile_Read_iEi_Service, Configuration_Read_iEi_Service,
Status_Read_iEi_Service, Command_Write_iEi_Service or
Configuration_Write_iEi_Service. Other services are not allowed for an
actuator.

5.3.4 Boolean_Actuator

The Boolean_Actuator class represents actuators that may only take two different
states: on and off.

Generalizations

• Actuator

Object Properties

None

Data Properties

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 65

Restrictions

[1] A boolean actuator may not include in its provided_services property services
from the following list: Smart_Command_Write_iEi_Service. This restriction
refines the restriction introduced in the parent class Actuator.

5.3.5 Switch_Actuator

The Switch_Actuator class represents a boolean actuator that can be remotely turned
on and off.

Generalizations

• Boolean_Actuator

Object Properties

None

Data Properties

None

Restrictions

None

5.3.6 Trigger_Actuator

The Trigger_Actuator class represents a boolean actuator that after being activated
requires human interaction to be reset to its initial state (e.g. fire alarm activator).

Generalizations

• Boolean_Actuator

Object Properties

None

Data Properties

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 66

Restrictions

None

5.3.7 Value_Actuator

The Value_Actuator class represents actuator devices that receive a value within a
value range as input, such as valve openers, variable lighting lamp actuators, etc.

Generalizations

• Actuator

Object Properties

None

Data Properties

• is_digital: boolean (single).

The is_digital property defines whether the actuator receives
a digital value or an analog value.

• max_value: double (single).

The max_value property defines the maximum value the
actuator can accept.

• min_value: double (single).

The min_value property defines the minimum value the
actuator can accept.

Restrictions

[1] A value actuator may not include in its provided_services property services
from the following list: Smart_Command_Write_iEi_Service,
Reset_Command_Write_iEi_Service. This restriction refines the restriction
introduced in the parent class Actuator.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 67

5.3.8 Smart_Actuator

The Smart_Actuator class represents actuator devices capable or processing complex
commands and provide complex actuating mechanisms. Examples of smart actuators
can be found in intelligent appliances, such as programmable washing machines or
air conditioning systems.

Generalizations

• Actuator

Object Properties

• accepted_commands: Smart_Actuator_Command_Information (multiple).

The accepted_commands property relates the smart actuator
device with the command set it is capable of managing.

Data Properties

None

Restrictions

[1] A value actuator may not include in its provided_services property services
from the following list: Value_Command_Write_iEi_Service,
Reset_Command_Write_iEi_Service. This restriction refines the restriction
introduced in the parent class Actuator.

5.3.9 Sensor

The Sensor class represents any kind sensing device, such as power consumption
sensors, light sensors, etc. More complex sensing devices, such as video cameras are
also included in this category.

Generalizations

• Simple_Device

Object Properties

• related_comfort_properties: Comfort_Variable_Information (multiple).

The related_comfort_properties property relates a sensor
with any comfort variables that depend on it. This information
will be used by the CDC to be able to apply different control

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 68

algorithms to the different actuators, sensors and appliances
taking into account their dependencies with user comfort
parameters.

Data Properties

• is_calibrable: boolean (single).

The is_calibrable property defines whether a sensor can be
calibrated or not by the CDC controls.

• coverage_area: double (single).

The coverage_area property provides the circular area value
(in m2) from the location of this device that is covered by the
sensor.

Restrictions

[1] A sensor may only include in its provided_services property services from the
following list: Profile_Read_iEi_Service, Configuration_Read_iEi_Service,
Status_Read_iEi_Service, SensorData_Read_iEi_Service,
Reset_Command_Write_iEi_Service or Configuration_Write_iEi_Service. Other
services are not allowed for a sensor.

5.3.10 Physical_Sensor

The Physical_Sensor class represents any kind sensing device intended to measure a
physical magnitude, such as power consumption, light, temperature etc.

Generalizations

• Sensor

Object Properties

None

Data Properties

• unit: String (single).

The unit property defines unit which characterizes the
physical value measured by the sensor.

• max_value: double (single).

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 69

The max_value property defines the maximum value the
sensor can provide.

• min_value: double (single).

The min_value property defines the minimum value the
sensor can provide.

Restrictions

None

5.3.11 Airflow_Sensor

The Airflow_Sensor class represents a sensing device intended to measure the flow
of air.

Generalizations

• Physical_Device

Object Properties

None

Data Properties

None

Restrictions

None

5.3.12 Gas_Sensor

The Gas_Sensor class represents a sensing device intended to measure the
concentration of a certain gas in the air.

Generalizations

• Physical_Device

Object Properties

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 70

None

Data Properties

• gas_type: String (single).

The gas_type property defines which gas type the sensor
measures.

Restrictions

None

5.3.13 Humidity_Sensor

The Humidity_Sensor class represents a sensing device intended to measure the
relative humidity of the air.

Generalizations

• Physical_Device

Object Properties

None

Data Properties

None

Restrictions

[1] The related_comfort_properties of a humidity sensor must always be set to
Humidity_Information.

5.3.14 Light_Sensor

The Light_Sensor class represents a sensing device intended to measure the
luminosity in an area.

Generalizations

• Physical_Device

Object Properties

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 71

None

Data Properties

None

Restrictions

[1] The related_comfort_properties of a light sensor must always be set to
Luminosity_Information.

5.3.15 Power_Sensor

The Power_Sensor class represents a sensing device intended to measure the power
produced or consumed at a certain appliance in the eDIANA platform.

Generalizations

• Physical_Device

Object Properties

None

Data Properties

• is_generated: boolean (single).

The is_generated property defines whether the data provided
by the sensor refers to consumed or generated power.

Restrictions

None

5.3.16 Sound_Sensor

The Sound_Sensor class represents a sensing device intended to measure the sound
intensity in an area.

Generalizations

• Physical_Device

Object Properties

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 72

None

Data Properties

None

Restrictions

[1] The related_comfort_properties of a sound sensor must always be set to
Noise_Information.

5.3.17 Sun_Radiation_Sensor

The Sun_Radiation_Sensor class represents a sensing device intended to measure
the intensity of the sun radiation in an area.

Generalizations

• Physical_Device

Object Properties

None

Data Properties

None

Restrictions

None

5.3.18 Temperature_Sensor

The Temperature_Sensor class represents a sensing device intended to measure the
temperature of a certain area.

Generalizations

• Physical_Device

Object Properties

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 73

Data Properties

None

Restrictions

[1] The related_comfort_properties of a temperature sensor must always be set
to Temperature_Information.

5.3.19 Threshold_Sensor

The Threshold_Sensor class represents any sensing device that triggers when a
certain variable surpasses a threshold value. Examples of this kind of sensors are
smoke sensors, fire sensors, etc.

Generalizations

• Sensor

Object Properties

None

Data Properties

None

Restrictions

None

5.3.20 Fire_Sensor

The Fire_Sensor class represents a sensing device that triggers when the
temperature surpasses a threshold value.

Generalizations

• Threshold_Sensor

Object Properties

None

Data Properties

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 74

None

Restrictions

None

5.3.21 Smoke_Sensor

The Smoke_Sensor class represents any sensing device that triggers when the
smoke level surpasses a threshold value.

Generalizations

• Threshold_Sensor

Object Properties

None

Data Properties

None

Restrictions

None

5.3.22 Movement_Sensor

The Movement_Sensor class represents any sensing device that triggers when the
movement of an object is detected within the coverage area of the sensor.

Generalizations

• Threshold_Sensor

Object Properties

None

Data Properties

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 75

Restrictions

None

5.3.23 Complex_Sensor

The Complex_Sensor class represents any sensing device that provides complex
data, such as a video stream.

Generalizations

• Sensor

Object Properties

None

Data Properties

None

Restrictions

None

5.3.24 Video_Camera

The Video_Camera class represents device which provides a video stream captured
in a certain area.

Generalizations

• Complex_Sensor

Object Properties

None

Data Properties

None

Restrictions

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 76

None

5.3.25 Appliance

The Appliance class is represents any kind of appliance used in the eDIANA platform
(e.g. televisions, washing machines, lamps, air conditioning systems...). These
appliances may consume, produce or store energy.

Generalizations

• Simple_Device

Object Properties

• related_comfort_properties: Comfort_Variable_Information (multiple).

The related_comfort_properties property relates an appliance
with any comfort variables that depend on it (e.g. a motor
controlling the blinds of a window is related to the lighting
management). This information will be used by the CDC to be
able to apply different control algorithms to the different
actuators, sensors and appliances taking into account their
dependencies with user comfort parameters.

Data Properties

• is_programmable: boolean (single).

The is_programmable property defines whether an appliance
can be programmed or not by the CDC to start/stop at a
concrete time instant.

• priority: int (single).

The priority property provides the CDC information on the
importance of the appliance for a user. For example, higher
priority appliances will be the last to be turned off by the CDC
when a cell is exceeding its power consumption limits.

Restrictions

[1] An appliance may only include in its provided_services property services from
the following list: Profile_Read_iEi_Service. Other services are not allowed for
an appliance.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 77

5.3.26 Generator

The Generator class represents an appliance used in the eDIANA platform capable of
generating electric power, such as photovoltaic panels.

Generalizations

• Appliance

Object Properties

None

Data Properties

None

Restrictions

None

5.3.27 Storage

The Storage class represents an appliance used in the eDIANA platform intended to
store electric power, such as batteries.

Generalizations

• Appliance

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 78

5.3.28 Load

The Load class represents an appliance used in the eDIANA platform that consumes
electric power to develop its functionalities, such as a lamp or a washing machine.

Generalizations

• Appliance

Object Properties

None

Data Properties

None

Restrictions

None

5.3.29 User_Interface

The User_Interface class is represents any kind of simple device intended to be used
by humans to obtain data from or to provide information to the Cell. Such devices
can be web pages, consoles, control panels, etc.

Generalizations

• Simple_Device

Object Properties

• direction: Direction_Information (multiple).

The direction property defines whether a user interface
device provides input information, receives output information
or both.

Data Properties

• is_graphical: boolean (single).

The is_graphical property provides the CDC information on
the graphical capabilities of the user interface device. The
CDC may decide to send different data to output interfaces to

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 79

graphical and non-graphical interfaces to optimize the
performance of these devices.

Restrictions

[1] A user interface device may only include in its provided_services property
services from the following list: Profile_Read_iEi_Service,
Configuration_Read_iEi_Service, Status_Read_iEi_Service,
UserData_Read_iEi_Service, LogData_Write_iEi_Service or
Configuration_Write_iEi_Service. Other services are not allowed for a user
interface device.

5.3.30 Complex_Device

The Complex_Device class is represents complex devices, such as smart washing
machines, or variable lamps with light sensors. These devices can be described as
compositions of simpler devices.

Generalizations

• Device

Object Properties

• composing_devices: Simple_Device (multiple).

The composing_devices property relates a complex device
with the simple devices that compose its full functionality.

Data Properties

None

Restrictions

[1] All the devices included in the composing_devices property must have the
same location as the complex device they compose.

5.3.31 Concentrator

The Concentrator class represents the concentrator devices of the Cell and MacroCell
levels of the eDIANA platform. These devices are not connected to the cells; instead
concentrators will connect to each other and to external elements (such as the
Internet and Power suppliers).

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 80

Generalizations

• Device

Object Properties

None

Data Properties

None

Restrictions

[1] The provided_services object property, inherited from Device, may only take
the values c2MCCi_Service or subclasses of External_Service.

5.3.32 CDC

The CDC class represents the Cell level concentrator of the eDIANA platform.

Generalizations

• Concentrator

Object Properties

None

Data Properties

None

Restrictions

None

5.3.33 MCC

The MCC class represents the MacroCell concentrator of the eDIANA platform.

Generalizations

• Concentrator

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 81

Object Properties

None

Data Properties

None

Restrictions

None

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 82

6. Ontology prototype.

Together with this document, the prototype of the Ontology for Device Awareness is
provided in the files:

• eDIANA_ContextAwareness.owl

• eDIANA_ContextAwareness.dot-input

• eDIANA_ContextAwareness.pprj

• eDIANA_ContextAwareness.repository

Figure 6-1 Ontology for Device Awareness

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 83

7. Conclusions

As has been said in the introduction chapter, the resultant ontology prototype should
be the very start point to continue with the definition of the middleware level.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 84

Acknowledgements

The eDIANA Consortium would like to acknowledge the financial support of the
European Commission and National Public Authorities from Spain, Netherlands,
Germany, Finland and Italy under the ARTEMIS Joint Technology Initiative.

References

[2] Knowledge Engineering Environment (KEE), The Encyclopedia of Computer
Languages.

[3] Daconta, M. C. Obrst, L. J. Smith, K.T. 2003. The Semantic Web: A Guide to the
Future of XML, Web Services, and Knowledge Management.

[4] Schmolze, J. G. Lipkis, T. A. Classification in the KL-ONE Knowledge
Representation System.

[5] Brachman, R. J. McGuiness, D. L. Patel-Schneider, P. F. Resnick, L. A. Borgida, A.
1991. Living With Classic: When and How to Use a KL-ONE-like language.

[6] KM Project Website, http://www.cs.utexas.edu/~mfkb/km/
[7] Kifer, M. Lausen, G. Wu, J. 1995. Logical Foundations of Object-Oriented and

Frame-Based Languages
[8] LOOM Project Website, http://www.isi.edu/isd/LOOM/
[9] Knowledge Interchange Format (KIF) Project Website,

http://logic.stanford.edu/kif/kif.html
[10] The SEED research laboratory Website,

http://seed.uma.pt/index.php?option=com_content&task=view&id=9&Itemid=51
[11] W3C Website, RDF primer, http://www.w3.org/TR/rdf-primer/
[12] W3C Website, Resource Description Framework (RDF): Concepts and Abstract

Syntax, http://www.w3.org/TR/rdf-concepts/
[13] Ding, L. Kolari, P. Ding, Z. Avancha, S. Finin, T. Joshi, A. 2005. Using

Ontologies in the Semantic Web: A Survey.
[14] Horrocks, I. 2002. DAML+OIL: A Description Logic for the Semantic Web.
[15] Antoniou, G. Franconi, E. Van Harmelen, F. Introduction to Semantic Web

Ontology Languages.
[16] Bruijn, J. Polleres, A. Lara, R. Fensel, D. 2005. OWL.
[17] Horrocks, I. Patel-Schneider, P. F. Van Harmelen, F. From SHIQ and RDF to

OWL. The Making of a Web Ontology Language.
[18] Horrocks, I. Patel-Schneider, P. F. McGuiness, D. L. Welty, C. A. OWL: A

Description Logic Based Ontology Language for the Semantic Web.
[19] Cuenca, B. Horrocks, I. Motik, B. Parsia, B. Patel-Schneider, P. Sattler, U.

OWL2: The Next Step for OWL.

Ontology for Device Awareness

eDIANA: GA no.: 100012
D2.2-A

30 November 2009 Page 85

[20] Noy, Natalya F. and McGuinness, Deborah L. Ontology Development 101: A
Guide to Creating Your First Ontology. Stanford University

[21] OSGi Alliance. OSGi Service Platform Service Compendium
[22] ZigBee Home Automation Public Application Profile. Home Automation Profile

Specification, ZigBee Alliance
[23] MageLang Institute. Introduction to CORBA 1998
[24] Common Object Request Broker Architecture (CORBA) for embedded

Specification. Object Management Group, Inc.

