

eDIANA

Embedded Systems for Energy Efficient Buildings

Grant agreement no.: 100012

Dissemination level

X PU = Public

 PP = Restricted to other programme participants (including the JU)

 RE = Restricted to a group specified by the consortium (including the JU)

 CO = Confidential, only for members of the consortium (including the JU)

Framework for adaptation through
reconfiguration of components

Author(s): X. Elkorobarrutia MU
J. Agirre MU
I. Rosenberg ATOS
J. Tillema QUINTOR
J. van Beek QUINTOR
GJ. van Dijk QUINTOR
T. Padilla I&IMS
MJ. Mtz. de Lizarduy I&IMS

Issue Date January 2010 (m12)

Deliverable Number D2.2-C

WP Number WP2

Status Delivered

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 2

Disclaimer

The information in this document is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

The document reflects only the author’s views and the Community is not liable for
any use that may be made of the information contained therein.

Document history

V Date Author Description

1.0 2009-06-15 I&IMS ToC

1.2 2009-11-13 MU A skeleton and ideas to be further
detailed

1.3 2009-12-14 MU MU contribution

1.4 2009-12-15 ATOS ATOS contribution chapter 3

1.5 2009-12-17 I&IMS Integration of MU and ATOS
contributions.

1.6 2010-01-19 MU MU contribution chapter 6

1.7 2010-01-27 ATOS ATOS contribution to chapter 4

2.0 2010-02-01 I&IMS Release

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 3

Summary

The “Framework of adaptation through reconfiguration of components” is an internal
document prepared in the context of WP2, Task 2.2. Middleware and Component
Self* with regard to design and development of middleware technologies for
eDIANA, in order to ensure the interoperability between devices and sensor involved
into eDIANA architecture.

This document is about the set of tools that will allow the complex eDIANA platform
to be capable to diagnose its own faults and guide an untrained user to repair the
system with minimal effort, both from a hardware and software perspective.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 4

Contents

SUMMARY...3

ABBREVIATIONS ..6

TABLE OF FIGURES ..7

1. INTRODUCTION. ..8

2. SUITABLE SELF* PROPERTIES FOR EDIANA PLATFORM. 11

2.1 OSGI/JAVA FOCUS ON SELF-CONFIGURATION AND SELF-HEALING..............................13

3. RECONFIGURATION AS A MECHANISM FOR ADAPTATION.................. 15

3.1 OSGI – COMPONENT FRAMEWORK. ...15
3.2 SMARTCAM..18
3.3 GENESYS. ..18
3.4 LIRA. ...19
3.5 JMX. ..21
3.6 RUNES...21

4. MIDDLEWARE SUPPORT FOR SYSTEM RECONFIGURATION................ 23

4.1 OSGI MIDDLEWARE AND SYSTEMS MANAGEMENT CAPABILITIES.23
4.1.1 Software Component Management... 23
4.1.2 Service-oriented architectures.. 23
4.1.3 Remote Component Management. ... 24

5. MODEL-CENTRIC RECONFIGURATION OF COMPONENTS.................... 27

5.1 OVERALL COMPONENT STRUCTURE..28
5.2 EXECUTOR CHANGES. ..29
5.3 HIERARCHICAL STATE-STRUCTURE SPECIFICATION. ...30
5.4 STATE BEHAVIOUR SPECIFICATION..31
5.5 PROGRAMMING MODEL. ...34
5.6 BACKGROUND ELEMENTS. ...36

6. DETAILED DESCRIPTION OF THE FRAMEWORK FOR COMPONENT
RECONFIGURATION.. 38

6.1 MIDDLEWARE TOOLS. OSGI AND RECONFIGURATION..38
6.2 A FRAMEWORK FOR MODEL-CENTRIC RECONFIGURATION OF STATECHART BASED SOFTWARE-
COMPONENTS..38
6.2.1 Programming Model. ... 39

6.2.1.1 Definition of Hierarchical Structure of States. ... 39
6.2.1.2 Definition of the Reactions of the Statechart. ... 40

6.2.1.3 Creating a Software-Component Based on a Statechart. 42
6.2.1.4 Consideration for Guard Evaluation and Action Execution. 45

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 5

6.2.2 Internal Elements for Event Processing... 46
6.2.3 Modifying the Statechart-Model at Run-time.. 49

ACKNOWLEDGEMENTS.. 53

REFERENCES ... 54

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 6

Abbreviations

API Application Programming Interface

CAN Controller Area Network

CIM Common Information Model

CMISE Common Management Information Service Element

CORBA Common Object Request Broker Architecture

eDIANA Embedded Systems for Energy Efficient Buildings

GPRS General Packet Radio Service

HTTP HyperText Transfer Protocol

JMX Java Management eXtensions

MDD Model Driven Development

OMA DM Open Mobile Alliance - Device Management

QoS Quality of Service

OSGi Open Services Gateway Initiative

RMI Remote Method Invocation

RUNES Reconfigurable, Ubiquitous, Networked Embedded Systems

SNMP Simple Network Management Protocol

UML Unified Modelling Language

URL Uniform Resource Location

XML eXtensible Markup Language

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 7

Table of Figures

FIGURE 3-1. THE RUNES COMPONENT MODEL. ... 22

FIGURE 5-1. STATECHART BASED COMPONENT... 28

FIGURE 5-2. STATECHART BASED COMPONENT STRUCTURE. .. 29

FIGURE 5-3. EXTRA CLASSES TO TRAP POSSIBLE EXCEPTION OF THE EXECUTOR PART. 30

FIGURE 5-4. CLASSES FOR THE CONSTRUCTION OF THE STATE-STRUCTURE OF A STATECHART. 31

FIGURE 5-5. CLASSES FOR THE DEFINITION OF THE BEHAVIOUR OF STATES. .. 32

FIGURE 5-6. STATECHART EXAMPLE.. 33

FIGURE 5-7. PREPARATION AND FIRING REACTIONS UPON THE RECEPTION OF AN EVENT........................... 34

FIGURE 5-8. BASE CLASS FOR ALL STATECHARTS. ... 34

FIGURE 6-1. STATECHART’S GUARDS AND ACTIONS WILL BE GROUPED IN INSTANCES OF EXECUTOR............. 39

FIGURE 6-2. THE API FOR THE DEFINITION OF THE STATE STRUCTURE OF A STATECHART......................... 40

FIGURE 6-3. CLASSES FOR DE DEFINITION OF THE STATECHART’S REACTIONS. 41

FIGURE 6-4. TRANSITIONS’ ENDS HETEROGENEITY. .. 42

FIGURE 6-5. BASE CLASS FOR CREATION OF STATECHART-BASED COMPONENTS. 42

FIGURA 6-6. A STATECHART EXAMPLE. .. 43

FIGURE 6-7. METHODS OF A REACTION TO BE LAUNCHED... 47

FIGURE 6-8. INTERFACE FOR EVENT PROCESSING CLASSES ... 49

FIGURE 6-9. SOFTWARE COMPONENTS WITH BEHAVIOUR MODIFICATION ABILITY.................................... 50

FIGURE 6-10. EACH STATE-MACHINE COULD HAVE VARIOUS BEHAVIOUR MODIFIERS. 51

FIGURA 6-11. MODIFIERS IMPLEMENTED AS ANY ACTIONS ASSOCIATED TO A STATECHART. 51

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 8

1. Introduction.

System dependability is the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers. Although it seems an
intuitive concept, it is difficult to quantify. This is done by means of some set of
meta-functional properties like reliability, safety, maintainability, availability and
security.

The basic concepts used concerning to the root causes of no proper functioning of
systems are defects, errors and faults. The first can be hardware defects or even
software design defects. Both those can be the cause of errors: an internal deviation
of the internal behaviour of a system and, finally, those erroneous states of a system
can lead to system failures: a discrepancy between the external behaviour of a
system from its specification.

The techniques to mitigate or to avoid the consequences of system faults can be
classified in the next groups:

• prevention,

• error elimination,

• prediction

• tolerance

Prevention is related with the using of the appropriate tools and support at design
and development-time.

Error elimination can be accomplished by verification techniques, at development-
time or at run-time, by monitoring the system and maintaining it.

Prediction is the capability at run-time to foresee an erroneous state and try to
eliminate them or at least mitigate their consequences.

Finally, fault-tolerance is a set of techniques that, based on the provision of the
necessary redundancy of components, gives a system the capability of correct
functioning even in the presence of an erroneous component.

Delving into hardware faults, we refer mostly to computational node’s faults and
communication infrastructure’ faults. This is true in computer intensive systems but
having a closer look at control systems: the main source of a system’ inability to fulfil
its duty is the system’s controlled devices and environmental uncertainties. These are
also known as environmental failures. In this scenario, the ability of the control

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 9

system of coping with those circumstances is more desirable than avoiding or
tolerating its’ internal faults.

The eDIANA platform fits in this category of systems. It will be more important that
the control system is capable of coping with various circumstances like device
unavailability, impossibility of communication or variation of working condition of
each device than cope with its hardware faults. In few words: environmental
adaptation capability.

In respect to software faults, those are used to model development-time defects.
Validation and verification techniques can help minimizing these faults but the true
cause of them is software complexity. Dependability, although being a desired
property of systems, increments software complexity.

The development of systems, which environment or even which internal structure
can vary at run-time, adds some extra complexity. This is especially true when this
adaptation is designed in an ad hoc way and not separated from the system’s
functional aspect.

Self* has addressed this problem and its goal is to manage complexity. It can be
resumed as “technology that manages technology”. Basically, it separates functional
aspects of a system from other system management issues. For that to be possible,
it is necessary to implement a “control loop” that monitor the system itself, acting on
it in order to maintain some desired properties in an acceptable range. This means
that software systems need to be instrumented with monitoring capabilities and it
has to have some ways of acting on it.

Self* community has made us aware of the need to separate the functional aspects
of a system from the management of this functionality to better adapt to varying
context or working condition. This awareness permits us to focus on general
mechanisms for system adaptation that can be suitable to apply to a wide range of
applications.

But first of all, we must define the context variations a system must cope with, the
suitable changes in the functional layer that need to be fired at run-time in order to
cope with this context variation and, finally, define an infrastructure which will permit
lo launch, at run time, those modifications in the functional layer.

In Section 2, the Self* properties addressed by the eDIANA platform will be defined.

Section 3 will argue that reconfiguration is the mean by which a system can be given
adaptation capabilities. In particular, there will be taken into account two kinds of
reconfiguration: system-wide through architecture reconfiguration and an intra-
component through behavioural change.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 10

Section 4 and 5 will delve into each of these two kinds of reconfiguration.

Finally, section 6 will described a more detailed description of the needed platforms
and/or framework to use or develop.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 11

2. Suitable Self* properties for eDIANA platform.

The main characteristic of a self-governable system is its conscience about itself. The
properties that it exhibits are generally among the next four:

• Self-configuration: installing, configuring and integrating large systems is
challenging and time-consuming. A self-configuring system configures itself
according to high level policies.

• Self-optimization: A self-optimizing system will continuously seek ways to
improve its operation, identifying opportunities to make itself more efficient in
performance or cost.

• Self-protection: the ability to protect itself from malicious attacks or inadvertent
cascading failures.

• Self-healing: the ability to detect, diagnose and repair localized problems
resulting from bugs or failures in software and hardware.

Those properties are not exclusive, neither independent. For example, a
reconfiguration action of the system can be launch in order to heal a system from an
erroneous component. Nevertheless, these properties are goals for which there must
be procedures, methodologies and supporting tools/frameworks to implement them.

In the scope of the eDIANA platform, self-optimization in not relevant; this property
is oriented at optimizing computational resources at run-time. Self-protection will not
be considered because the real value of the eDIANA platform is the control it
performs on devices and energy consumption and not the control system itself. The
correct usage of devices and energy management will be among the functional
specifications of the system.

Self-configuring and self-healing will have more priority due to the changing
environment in which the eDIANA platform will operate. The availability/unavailability
of various services and the presence of different devices can not be anticipated and
this implies a dynamic reconfiguration of the system at run-time.

Self-healing would also be necessary in order to cope with malfunctioning software
components, defective elements and not desired emergent behaviour arisen from the
heterogeneous composition of the system.

Many issues to be accomplished on such platform as eDIANA could be found. In this
work package, the ones that affect the dependability of the system must be chosen
and prioritized.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 12

The main nature of system malfunction will come from, first, the dynamic and
heterogeneous nature of the control system itself and, second, the devices which the
platform is on charge. Thus, the main source of the system malfunctioning would
come from the changing context in which the system is working on and the
complexity that this changing context implies in the system.

Therefore, traditional fault tolerant techniques based on redundancy do not have
much sense if we accept that the main source of difficulties would arise from the
environment and not the control system itself. Moreover, these kinds of techniques
are expensive in terms of development as well as economic costs.

Thus, what would be more suitable is the capability of the control system to have the
capability to adapt to new circumstances.

Adaptation means a change of structure or behaviour that makes the system better
fulfil its duty. For example, self-configuration can be seen as one kind of adaptation.
Thus, from now on, it will be used the term self-adaptation and, depending on the
obtained benefits, the system will gain self-configuring or self-healing properties.

In order to give self-adaptation capabilities to a system, this could be done for a
specific application problem or could be defined some general approaches that can
be applied/adapted in a wide range of application. In a latter approach,
reconfiguration can be the mechanism by which the system could be self-adaptive.
Thus, there must be defined general reconfiguration mechanisms that, applied in a
particular system and in a specific way, gives systems adaptation capabilities.

But for the system to be adaptable, it must be aware of its environment or context
because it will change its behaviour according to variations in this environment. For
that to be possible, there must be a sensing mechanism that will make the system
aware of those working conditions changes. If it would be possible to standardize the
elements to be monitored, it will be possible to instrument each component with the
necessary support for being monitored or notify information of interest. If not, in
order to propose a general mechanism, a notification service (like the one specified
in CORBA, for example) can be employed. This service will work in an application
agnostic way and each component will need to be tuned to produce/interpret the
provided information.

The decision element could be a global component of the system where all
adaptation logic is centralized or, also, where each component could have a part of
this logic that corresponds to it.

As conclusion, reconfiguration will be the mean by which a system can gain
adaptation capabilities. In the eDIANA context, the factors to be taken into account
to such adaptation are uncertainties, changes in the environment or the system itself
exhibiting malfunctions: devices, available services, human input, communications,

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 13

external stimuli range and so on. The types of reconfiguration that will be
contemplated for the eDIANA platform will be the topic of next section.

The complete system is made up of devices, which often form a complex network
with interdependencies. Each device, seen independently, may either be
malfunctioning or working correctly. The events which cause the device to change
from one state to the other may depend on the device itself or on some external
factors.

A platform which could provide these kinds of capabilities and that is available in the
market would be the OSGi platform. This platform has been also evaluated in other
working lines of the eDIANA project as are the middleware for device awareness
(D2.2A) or the platforms providing service discovery protocols (D2.2B).

2.1 OSGi/Java focus on Self-configuration and Self-healing.

The OSGi Service Platform is a platform for developing component based self-
adapting and self-configuring software for embedded devices. The self-adapting
OSGi software can download, install and run new components on the fly.

Software is omnipresent. Millions of computers surround us, all of them running
software. Not only the standard desktop-platforms, servers and main frames come to
mind but also PDA's, smart-phones, game consoles, set- top boxes. Even cars and
household-devices are or will be driven by (mini-)computers and software and will be
network-enabled. All of them need software to run.

Along with the explosion of new devices comes the explosion of software. This calls
for a platform independent development model for software, able to run on a variety
of platforms. Developing software for multiple platforms however, has never been
easy and still isn't trivial when developing for very different platforms, despite the
availability of the Java Platform.

An important aspect when developing platform independent software is the
availability of the resources a program needs. Although this issue might not be as
important when developing for powerful easily upgradable desktop platform, it's
something to take into account when developing for small mobile devices with
usually rather limited resources. There can also be many differences between these
types of devices. Therefore a really platform independent application should adapt
itself to the device it is executed on.

• Adaptive software

OSGI enables the developement of adaptive software. Adaptive software, as the
name suggests, adapts itself to its environment. In particular it can change its
behavior or looks depending on the availability of certain resources like the display,

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 14

the input devices, the amount of memory or available network bandwidth. Obviously
these changes must occur at runtime because the availability of most resources
changes constantly.

Two kinds of adaptivity can be distinguished. Functional adaptivity means that a
program exhibits more functionality when the needed resources are available than
when they are not available. Another kind is nonfunctional adaptivity. The
functionality stays the same, but is degraded to lower performance in the absence of
sufficient resources. For example, when there is little memory left, a program could
switch to an algorithm that uses less memory, but takes a longer time to execute.
OSGi supports both kinds of adaptivity.

• Advantages

There are a number of advantages to adaptive software. First of all, it facilitates the
distribution of software to a wide variety of platforms. Software can already be
written in a platform independent way, because all platform specific details can be
hidden by means of a virtual machine.

However, this does mean you can't take advantage of the platform specific
properties such as the size of the available screen. With adaptive software it should
be possible to achieve even greater platform independence. Instead of developing a
different software distribution for every type of device, it is possible to make one
software distribution that can run on several types of devices and, for example,
adjusts its user interface to the screen size. On constrained devices hardware
resources are typically not available in abundance. As mentioned before, this too is a
situation where adaptive software is useful. When the load on a certain resource is
too high, the software can detect this and take some action. It may reduce its
functionality, but still provide an adequate user experience (graceful degradation) or
it may switch to a less resource hungry algorithm or component.

Adaptive software using OSGi may not only provide an overall better user
experience, it also simplifies development. Instead of developing multiple parallel
versions of a software application for multiple platforms it's easier to maintain one
single version running on multiple platforms. This allows you to focus developer
resources in one place and deliver better results faster.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 15

3. Reconfiguration as a mechanism for adaptation.

Having pointed to reconfiguration as a mean to obtain self-adaptive systems and
aiming at defining application-independent strategies, at least, two kinds of
approaches can be taken into account: architecture level and inside-component level.

In architecture level approaches, components are seen as the indivisible and atomic
building blocks (black boxes). By replacing, replicating, updating components and
their association the overall behaviour of the system can be changed/adapted to new
environmental circumstances.

Components platforms offer those facilities; rests to define within each application
which architectural changes must be launched in response to environmental
changes.

3.1 OSGi – component framework.

OSGi stands for Open Services Gateway Initiative. The OSGi consortium defines a
standardized, component oriented, computing environment for networked services.
Adding an OSGi Service Platform to a networked device (embedded as well as
servers), adds the capability to manage the lifecycle of the software components in
the device from any where in the network. Software components, which are called
bundles in the OSGi specifications, can be installed, updated, or removed on the fly
without ever having to disrupt the operation of the device. This solves the problem of
distributing software to a multitude of different platforms, each having a different
procedure to install or uninstall software. The OSGi platform is based on Java, this
makes it the ideal platform for the distribution of platform independent software
components. Bundles are libraries, applications or services that can dynamically
discover and use the libraries and services of other installed bundles. They can be
bought off the shelf or developed in-house. The a OSGi Alliance has developed many
standard component interfaces that are available for common functions like HTTP
servers, configuration , logging, security, user administration, XML, and many more.

• Architecture

The OSGi specification defines an extra layer of abstraction on top of an existing Java
Virtual Machine (JVM).

For software developers, consumer device technology provides an increasingly
interesting environment in which they can deliver products and services. Consumer
devices are much more prolific than personal computers and, perhaps more
importantly, are more integrated into everyday life. As a result, software developers
benefit from unprecedented levels of access to the user by targeting their products

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 16

and services towards consumer devices. The consumer device software market is
fueled by four factors:

The increasing power of consumer devices, such as mobile phones or personal digital
assistants (PDA's).

o The transformation of “traditional” consumer devices, such as refrigerators
and washing machines, into “smart” consumer devices.

o The widespread availability of broadband Internet connectivity.

o The growing prevalence of home-area networks.

The Open Services Gateway Initiative (OSGi) is helping developers realize the
potential of the consumer device market; OSGi is an “independent, non-profit
corporation working to define and promote open specifications for the delivery of
managed broadband services to networks in homes, cars, and other environments.”
Specifically, the OSGi specification defines a service platform that includes a minimal
component-like model and a small framework for managing the components,
including a packaging and delivery format.

The OSGi framework facilitates dynamic installation and management of simple
components called bundles. These dynamically loadable components interact with
each other and form “applications” by providing and using services. A service is a
Java interface with defined semantics and potentially multiple implementations.
Services are packaged along with their associated resources and deployed via the
Internet into the OSGi home services gateway. In this scenario, consumer devices
become delivery mechanisms, capable to deliver bundles along with their associated
services.

The services gateway acts as the access mechanism or conduit between service
providers and the end-user. A typical application scenario is that of a home security
company that monitors the end-user's home for security concerns using a
combination of hardware (e.g., sensors) and software (e.g., sensor monitors,
software control panels for the end-users and the service provider). While OSGi
creates a good foundation on which to build such services, it is still fairly low-level;
the low abstraction level increases the complexity of offering complex applications on
top of the OSGi framework.

At component internals’ level, its behaviour can be varied in accordance to different
environment or other components needs. This can be obtained at leas by two ways.
First, emulating architecture level strategies and changing internal structure of
elements (objects, classes, association, etc.) in order to modify the externally visible
behaviour of the component. And secondly, having a behavioural model of the

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 17

component, modifying it assuming that such models are available at run-time and
moreover, needing those model changes to take effect on the running component.

For that last issue, in Section 5 a framework will be specified for developing software
components whose behaviour is describable by means of statechart in a MDD style of
development. But thanks to that framework, the developed components will reflect
at run-rime the statechat-model it is derived from. A change in this reflected model
will imply automatically a change on the component behaviour.

A component platform is an extension of the typical architecture of a framework, in
which core services are available. The core services support the component’s
interaction with the rest of the platform, and as such express the component
behaviour, externally visible at the interfaces. Usually, the core services encompass
communications services (for example via message passing), fault tolerance services
and timing services. The additional services which can be deployed are called
components - there is a common model for their definition, deployment and
interconnection. The core services are used as the minimal features upon which to
construct the more sophisticated functionalities of the components. This enables the
emergence of global application services of the overall system, out of local
application services of the constituting components [1]. For example, the built-in
message passing interfaces can be extended by adding resilience and control,
producing a reliable communication component. In the eDIANA scope, the common
model should be versatile enough to be adaptable to components supported by
hardware devices, but at the same time complete enough to offer configuration and
life-cycle changes at run-time. Another important requirements lies in real-time
response: a fire-protection system may define different needs from a light-saving
embedded network.

A desirable quality of the framework is the capacity of hot-swapping: replacing a
component without having to interfere in the lifecycle of the other components of the
framework, in particular those which are connected to the component to replace. As
the interconnection of the components is dependent on the framework’s core
services, the replacement of components must rely on functionality offered by the
core services. One typical situation that must be addressed concerns message
buffering: during the replacement of a component, the messages which are sent to
the component must stop reaching the old component, and start reaching the new
one. When the component replacement is not an instantaneous operation, the
platform must retain the messages that otherwise would be lost, and must be
capable of replaying them to the new component once it is fully deployed.

Another point concerns heterogeneity. As P. Costa et al. [2] describe it, “Next
generation embedded systems will be composed of large numbers of heterogeneous
devices. These will typically be resource-constrained (such as sensor motes), will use
different operating systems, and will be connected through different types of

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 18

network interfaces. Additionally, they may be mobile and/or form ad-hoc networks
with their peers, and will need to be adaptive to changing conditions based on
context-awareness”.

The platform that federates them must be capable of supporting such changeability,
in a consistent way. To be able to offer this, the platform must have a rigorous
interface specification, which describes precisely how components must integrate
with the framework, and the expected behaviour of the different elements upon the
possible stimuli of the environment (which produce component response, including
failure). When this is offered, the replacement component may be a totally different
implementation, as long as the interfaces presented remain the same. This allows for
an increased range of acceptable components, making the platform more versatile.
As a side note, it must be taken into account that the complexity of the platform, and
possible design faults, are of particular importance for safety-critical applications
needing to be certified – the over-specific specification of the interfaces is then seen
as a requirement.

In the following paragraphs, we propose several examples of such component
frameworks.

3.2 SmartCAM.

The SmartCAM platform [3], further refined as the DSC-Agents platform [4], is a
light-weight middleware designed for smart cameras, offering flexible algorithm
communication and dynamic component composition.

It defines publication mechanisms which enables rich communication behaviours. For
example, components can be advertised, including the description of the behaviour
(business logic).

The algorithms implemented within the components can be replaced by sending new
versions over the communication channel, using dynamic loading and linking through
the Texas Instrument software framework Dynamic Loader. The replaceable
algorithms are seen as another component within the framework, and offer specific
interfaces and descriptions. Moreover, the framework constantly monitors QoS,
making sure that the components are acting within their limits, degrading
performance gracefully or replacing components when violations are reported.

3.3 GENESYS.

The GENESYS Architecture proposes a “conceptual model and terminology for
component-based development of distributed real-time systems”.

The core platform services provide elementary capabilities for the interaction of
components, such as message-based communication between components or a

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 19

global time base. In addition, the specification of a component’s interface builds
upon the concepts and operations of the core platform services.

The component interface specification constrains the use of these operations and
assigns contextual information (e.g. semantics in relation to the component
environment) and significant properties (e.g. reliability requirements, energy
constraints).

The core platform services are a key aspect in the interaction between integrator and
component developer. Different types of services can be distinguished: global
application services of the overall system, local application services of components,
and platform services. The critical concept of component interface is introduced
through the Linking Interface (borderline between component and platform) and it
represents the unique point of transfer of information between the component and
the rest of the platform – it must define the syntax of the information exchange, the
different timing events and possibly the relationship with the environment [5]-.

The GENESYS architecture [6] provides deep insight into which concepts must be
addressed by component frameworks. For example, it makes specific distinction
between integration levels, ranging from system, device, to chip. It also presents the
needed abstraction levels required to analyse, design and introspect the platform. It
recommends the maximum simplification of the platform and systems to increase the
various qualities included within dependability, this can be reached through
abstraction, partitioning or segmentation. Other important themes which are
addressed include network connectivity, resource management, and the typical
robustness and security features.

A reconfiguration system is provided within the GENESYS architecture [6], and
centres on providing a resource reallocation scheme. New resource allocations can
be calculated by a general purpose micro component at run-time or can be
determined offline before deployment and fetched at run-time.

The reconfiguration core service investigates new resource allocations by checking
the compliance with constraints in the time-triggered communication schedule, and
also tracks potential collisions, and finally approves it for distribution.

The exploitation of the GENESYS architecture is already under way through the
INDEXYS project [7] based on use cases in the automotive, aerospace and railway
sectors.

3.4 LIRA.

Other platform available for reconfiguration is LIRA. It is a lightweight infrastructure
for managing dynamic reconfiguration that applies and extends the concepts of
network management to component-based, distributed software systems.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 20

LIRA is designed to perform both component-level reconfigurations and scalable
application-level reconfigurations, the former through agents associated with
individual components and the latter through a hierarchy of managers.

Agents are programmed on a component-by-component basis to respond to
reconfiguration requests appropriate for that component. Managers embody the logic
for monitoring the state of one or more components, and for determining when and
how to execute reconfiguration activities. A simple protocol based on SNMP is used
for communication among managers and agents.

LIRA offers a decision maker for selecting suitable new configurations and allows for
monitoring and reconfiguration at components and applications level, while decisions
are taken following the feedbacks provided by the evaluation of statistical Petri net
models [8]. This advanced design in the platform logic allows complicated behaviours
to emerge.

LIRA originally stemmed from a heavyweight platform, which after inspection and
intensive diet was thinned down to a lightweight platform. The initial platform
depended on a software deployment system called Software Dock, which
represented component dependencies and constraints arising from heterogeneous
deployment environments.

However, it did not provide explicit support for dynamic reconfiguration although its
infrastructure was designed to accommodate the future introduction of such a
capability. Severe demands were imposed on component and application developers:
extra functionality had to be deployed on each host to support the deployment
activities and communications between components. It also required the use of a
special deployment language. The Software Dock leads to a “heavyweight” solution
to the problem of dynamic reconfiguration, a characteristic shared by many other
reconfiguration systems (e.g., DRS [9], Lua [10] and PRISMA [11]).

LIRA has its original design based on the concepts of SNMP (Simple Network
Management Protocol): agents, mangers, a protocol and management information.
Reconfiguration agents, in charge of lifecycle management, are associated with
execution components, while a host agent is associated with a device in the network
and is responsible for installing and activating components on that host. The
architecture is hierarchical to support scalable management.

Maintaining consistency during and after a reconfiguration is problematic. Usually,
the consistency properties of the system are expressed through logical constraints
that should be respected, either a posteriori or a priori.

If the constraints are seen as post-conditions [12], the reconfiguration must be
undone if a constraint is violated. If the constraints are seen as preconditions [13],
the reconfiguration can be done only if the constraints are satisfied.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 21

LIRA approaches the consistency problem by delegating responsibility to agents to
do what is necessary to guarantee consistency and state integrity. This is in line with
the idea of “self-organizing software architectures”, where the goal is to minimize the
amount of explicit management and reduce protocol communication. It is also in line
with the idea of a lightweight service, where we assume that the component
developer has the proper insight about how best to maintain consistency. This is in
contrast to having the reconfiguration infrastructure impose some sort of
consistency-maintenance scheme of its own.

3.5 JMX.

Java Management eXtensions (JMX) is a specification that defines an architecture,
design pattern, APIs, and services for application and network management in the
Java programming language. Under JMX, each managed resource and its
reconfiguration services are captured as a so-called MBean.

The MBean is registered with an MBean server inside a JMX agent. The JMX agent
controls the registered resources and makes them available to remote management
applications. The reconfiguration logic of JMX agents can be dynamically extended by
registering MBeans. Finally, the JMX specification allows communication among
different kinds of managers through connectors and protocol adaptors that provide
integration with HTTP, RMI, and even the SNMP protocols.

While JMX is clearly a powerful reconfiguration framework, it is also a heavyweight
mechanism and one that is strongly tied to one specific platform, namely Java.

3.6 RUNES.

The range of devices involved in networked embedded environments inevitably leads
to significant complexity in appropriately configuring, deploying, and dynamically
reconfiguring the software.

There is therefore a need for dedicated middleware platforms addressing networked
embedded systems, with abstractions that can span the full range of heterogeneous
systems (encompasses dedicated radio layers, networks, middleware, and specialised
simulation and verification tools) and which also offer consistent mechanisms with
which to configure, deploy, and dynamically reconfigure both system and application
level software.

The EU-funded RUNES (Reconfigurable, Ubiquitous, Networked Embedded Systems)
approach is based on a small and efficient ‘middleware kernel’ which supports highly
modularised and customisable component-based middleware services that can be
tailored for specific embedded environments, and are runtime reconfigurable to
support adaptability. These services are primarily communications-related but also
address a range of other concerns including service discovery and logical mobility.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 22

The middleware provision comprises two distinct and orthogonal parts:

• first, a foundation layer – called the middleware kernel – which is the runtime
realisation of a simple but well-defined software component model;

• second, on top of the middleware kernel, a layer of component frameworks that
offer a configurable and extensible set of middleware and application services.

In this two-layer architecture, the software infrastructure for a specific
heterogeneous, embedded networked system is achieved by providing an
appropriate implementation or implementations of the middleware kernel, and of the
required configuration of middleware (or application) services running on top of it.

Figure 3-1. The RUNES component model.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 23

4. Middleware support for system reconfiguration.

4.1 OSGi middleware and systems management capabilities.

OSGi provides a flexible remote management architecture that allows platform
operators (the organization that manages the platform) and enterprises to manage
thousands or even millions of Service Platforms from a single management domain.
The OSGi Service Platform architecture allows the operator to control a platform in
fine detail by using a model where the operators can ensure that their required
policies are implemented, owever secure or flexible those policies are desired to be:
from a walled garden to the anarchy of a PC.

4.1.1 Software Component Management.

the OSGi Service Platform represents an excellent way to deploy composite
applications. The platform helps during the development of the components and with
the assembly and configuration of them at runtime. Additionally, the OSGi Service
Platform provides comprehensive life cycle management capabilities for these
components so that each component can be controlled individually. the OSGi Service
Platform represents an excellent way to deploy composite applications. The platform
helps during the development of the components and with the assembly and
configuration of them at runtime. Additionally, the OSGi Service Platform provides
comprehensive life cycle management capabilities for these components so that each
component can be controlled individually.

4.1.2 Service-oriented architectures.

On top of the life cycle management capabilities, the OSGi Service Platform
introduces the concepts of Service-Oriented Architectures (SOA). Whereas SOA is
normally associated with services communicating over networks across machine
boundaries, the OSGi Service Platform applies these concepts to the local virtual
machine only. Each component can add it’s own services or use services from other
components to participate in this SOA infrastructure. As described, the OSGi Service
Platform controls the life cycle of each component. In addition, the creation of
services and the wiring between the components gets tracked.

The functions provided by the framework are based around the following life cycle:

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 24

• Packaging: The packaging of bundles is based on the Java Archive (JAR) File
Format. The framework specifics how to supply addition metadata to e. g.
distinguish between different version.

• Install: The framework validates the bundle and ensures that all requirements
are met.

• Start/stop: Installed bundles can be started and stopped.

• Update: The framework allows to update installed bundles. It ensures that all
previous loaded code gets replaced and that depending bundles are supplied with
the new code.

• Uninstall: Finally, a bundle can b e removed from the container.

4.1.3 Remote Component Management.

The OSGi Service Platform is specifically designed for devices that can operate
unattended or under control of a platform operator. These are the devices that need
remote management. Managing devices remotely requires a protocol. Selecting an
appropriate protocol is difficult because there are so many choices: SNMP, CMISE,
CIM, OMA DM, and more.

The OSGi Alliance decided that no management protocol can be preferred over
others because no protocol is suitable for all cases. The OSGi Alliance therefore
chose an architecture that provides a management API to be used by an authorized
bundle. This authorized bundle can then map a protocol to API calls. This is a very
powerful concept that offers the same interoperability as a standard protocol.
However, the benefits of this concept are not always immediately obvious. The
benefit of a standard protocol is that any device can be managed by any
management system. With the OSGi remote management architecture, the same
advantage is achieved with an API and bundles which provide a higher level of
abstraction with respect to a protocol. As long as a management system can provide
a standardized OSGi protocol bundle, it can operate with any manufacturer’s device,
regardless of the underlying protocol.

By not specifying a protocol, the management system can optimize for the carrier
characteristics. For example, a mobile phone with GPRS has high latency, expensive
bandwidth, and is not always online. A residential gateway is always online, has low
latency, and near zero cost bandwidth. Obviously, a protocol suitable for a mobile
phone might not leverage the more privileged position of the gateway. Vice versa, a
protocol that works well for a residential gateway does not work for a mobile phone.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 25

The OSGi management model therefore allows both industries to use their optimal
management protocol without wreaking havoc on the interoperability.

As the OSGi framework is a module system for Java that implements a complete and
dynamic component model, it is a perfect fit for the model presented for the eDIANA
architecture. The remote control and management allows building up extremely
dynamic systems, which can be instrumented and configured to be highly self-
managed. This possibility can be leveraged to apply to heterogeneous sets of
devices, where the proper abstractions allow keeping the management burden to an
affordable level.

The core of the OSGi framework is composed of many services. These services can
be implemented by bundles, and also register within the Registry. The core services
can be divided in four main categories: framework services, system services, protocol
services, and lastly miscellaneous services.

The framework services include Permission Admin (to segment interactions between
bundles), Package Admin (information about the actual package sharing state of the
system, specifically useful for shared packages), Start Level (used at framework
initialization), URL Handler (to manage service and resource lookup).

The system services include Logging (dispatching its input to other bundles
subscribed to it), Configuration Admin (to set up the configuration information of
deployed bundles), Device Access (to coordinate the automatic inclusion of existing
devices), User Admin (for authentication and authorization purposes), IO Connector
(implementing the CDC/CLDC package as a service, for new and alternative protocol
schemes), Preferences (to store preferences to be used by other bundles),
Component Runtime (offering simpler development and deployment through XML
based declaration of dependencies), Deployment Admin, Event Admin
(communications based on a publish-and-subscribe model), Application Admin
(management of an environment).

The protocol services include HTTP Service, UPnP Device Service (for Universal Plug
and Play devices). DMT Admin (following the Open Mobile Alliance device
management specifications).

The Miscellaneous Services include Wire Admin (connection between Producer and
Consumer services), XML Parser (for a JAXP compatible parser), Measurement and
State (to provide instrumentation, through simplification of the management of
measurements).

The OSGi framework is widely accepted. Since its foundation in 1999, it has brought
together the main creators of mobile technologies, as well as many big software
companies. The OSGi specifications are now used in applications ranging from mobile
phones to the open source Eclipse IDE. Other application areas include automobiles,

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 26

industrial automation, building automation, PDAs, grid computing, entertainment,
fleet management and application servers. The latest release of the specification is
Version 4.2 of September 2009. The releases (October 2005) 4.0 and (May 2007) 4.1
are very widely used currently.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 27

5. Model-centric reconfiguration of components.

In this section, a mechanism for giving a software component the ability to change
its behaviour at run-rime will be described. This mechanism is intended not to be
hardwired with the rest of the functionality and, thus, it will become a generic
approach. We will assume that the behaviour of the components is described by
means of statecharts.

As noticed in [14], the adaptation mechanism implemented in embedded systems
has evolved and will probably evolve in the following way. Indeed, in a first stage,
adaptation was not considered. At a second stage, it had not been separated from
the rest of the functionalities. At a third stage, where we probably are nowadays, we
consciously consider it but there is no proven engineering practice to cope with it in a
systematic way. And at a final stage, this engineering practice will arise. Moreover,
such adaptation mechanisms could be a complementary technique to traditional
redundancy-based fault-tolerance approaches, even a cheaper one.

The selected approach goes towards an adaptation-engineering. Many times,
depending of the surrounding conditions, a software component must behave in
different ways. Each stable set of those conditions will be referred as “working
mode”. In developing such components it is usual to hardwire the code related to
every working mode and the code in charge of the behaviour change. This last one is
not separated from the rest of the functionality.

The following approach is illustrated in figure 5-1 where each statechart based
component is provided with a basic behaviour plus some “behaviour modifiers”.
Whenever a component needs to change its working mode, it will launch one of
those modifiers as a reconfiguration of its behaviour. This way, once the core
functionality has been provided, the code related to each working mode can be
developed in an independent way and a framework will assist at run-rime in
changing the behaviour of the component.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 28

Figure 5-1. Statechart based component.

5.1 Overall Component Structure.

It will be proposed a model centric approach [15]. This is, the statechart-model of
the component will not be used only as a design artefact, but it will persist at run–
time reflecting its behaviour. Any changes to the component’s behaviour will be
accomplished changing this model which will immediately affect the component’s
behaviour.

The next concepts need to be distinguished: the set of events that the component
will be aware of and upon whose reception it will potentially fire some reactions; the
set of actions that will define those reactions and to which we will refer as
functionality; and finally, the control or the part of the component that determines
the actions that must be launched as a reaction to each particular event in each state
of the component. This last one is the core of a statechart.

Figure 5-2 illustrates the overall structure of the proposed software component.
Some of its parts will be provided by a framework and the specific application will
need to be defined by the developer. The roles of each part are:

• Buffer: The events that the component will react to will be materialized as
messages that will be stored in this buffer until the component processes them.

• Timer: a timing facility provided by the framework.

• Executor: a part that defines all the actions that can be fired by the component
and all the guards needed to be evaluated in order to take the decision to fire a
reaction.

• StatechartDefinition: it describes the statechart model of the component:
states, hierarchy, region, references to guards and actions, etc.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 29

• GlobalRepository: a data structure that maintains a snapshot of the
component: the set of the states that are active and the message the component
is processing in each moment.

• Dispatcher: a component provided by the framework that upon the reception of
a message, interrogates the StatechartDefinition part to determine the action to
be fired and

StateMachine

: GlobalRepository[1]

stateChartDefinition[1]
: Dispatcher[1]

: Executor

: Buffer[1]:Timer[1]
MessageReceptor

MessageReceptor

Figure 5-2. Statechart based component structure.

In order to more precisely define the kinds of reconfiguration that can be launched at
run-time, three elements can be considered: The set of events that the component
reacts to, the statechart definition and the executor parts. The first one is a system-
wide concern; thus, it will not be considered.

The only thing to be defined about events is the form in which they will be
materialized in our component. Every event will be notified trough a message. There
is an abstract base class called “Event” form all the rest of messages will derive. An
infrastructure must be supplied in order to receive those events or notify to the rest
of the system.

5.2 Executor Changes.

The duty of the executor part is to provide the bodies of all the guards that
potentially must be evaluated in order to determine the reactions to be fired and,
also, the bodies of the actions that can be fired as a reaction to an event; for

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 30

instance, the implementation of the actions and guards that have been associated to
all transition (normal or internal) of the statechart.

One motivation for changing the executor part at run-time is the toleration of
software faults. Upon the detection of those faults, the framework can replace the
current one with another one. This way, in an easy form, there can be applied
Backward-Recovery [16] algorithm to this particular part.

In a simple form, it can be a class having the mentioned elements plus some
pseudo-state variables. For enabling the above mentioned run-time change in a
generic manner, figure 5-3 illustrates one way to accomplish it. For that issue, an
extra indirection is inserted that whenever a guard must be evaluated or an action
must be executed, traps any exception launched from the current executor and,
provided the necessary redundancy it an redirect the actual invocation to another
version.

Executor

ExecutorHandler

+evaluateGuard()
+executeAction()

1

Action

#actName: String

+execute(context: GlobalRepository)
+getName(): String

MethodInvocation

1

MessageSending

Figure 5-3. Extra classes to trap possible exception of the executor part.

5.3 Hierarchical State-Structure Specification.

Returning to the StatechartDefinition part, this is the element where it is possible to
implement behaviour changes in a coarse grained way. As said before, it constitutes
the specification of the statechart. But instead of serving the statechart-model as a
design artefact, it is used at run time for determining the pertinent reaction or
sequence of actions to be fired.

The dispatcher is an element provided by the framework that implements the UML
[17] statechart execution semantic and acts as the “motor” for any statechart. For
that issue, the statechart model should be described in some manner.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 31

The selected one is to construct in a programmatic way a composite object that
reflects this statechart model.

The figure 5-4 shows main classes of the proposed framework in order to describe
the desired statechart. It focuses mainly in the principal elements for defining the
structure of a hierarchical state-machine [18].

State

XorStateAndState
0..1

*

Region 1*

0..1

*

Reaction
<<interface>>

1

*
+TipoEvento+TipoEvento

DecisionElement
<<interface>>

History

DeepHistoryShallowHistory

Figure 5-4. Classes for the construction of the state-structure of a statechart.

5.4 State Behaviour Specification.

Once determined the statechart structure, there must be defined the reactions that
must be fired in each state: transitions and internal transitions.

The classes that permit us to define those reactions are illustrated in figure 5-5.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 32

Reaction
<<interface>>

SimpleReactionComplexReactionForkReactionJoinReaction

2..*

PreparedReaction

SimplePrepReactionMultiTargetPrepReaction

<<creates>>

DecisionElement

1

Figure 5-5. Classes for the definition of the behaviour of states.

A reaction basically is a transition from one state to other. Depending on the type of
transitions it can have multiple sources (join), multiple targets (fork) or even no
target (internal transition). Due to implementation issues those concepts are
reflected in different classes.

The classes derived from PreparedReaction deserve additional explanation. The

reason for them is that a transition in a hierarchical state machine actually is a family
of transitions in their counterpart plane statemachines.

To illustrate this concept lets take the example of the figure 5-6 and consider the

transition labelled as ev4 . Its source at design time is state A but its meaning for

run-time is that its real source will be state A or B depending on which of them is the
active one. This means that the possible reactions that would be launched could be
different. At least, they can differ in the fact that one mush executes the exit action
associated with the state A and the other, the one associated with state B.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 33

A

B

C

B

C

Dev1

ev2

ev3

ev4

ev2/accionAev2

ev1/accionCev1

Figure 5-6. Statechart example.

Then, the classes that derive from PreparedReaction are the exact reactions that

must be fired and, for that, they must be created at run-time depending of the
statechart definition itself but, also, the current active state set. Figure 5-7 illustrates
how are created those PreparedReactions .

The classes enumerated until now conform the interface of the API that the
framework must offer to the developer. Resuming, first we need to define the
statechart structure, then, based on this structure, we must define the reactions
associated with each state and, finally, an executor must be provided (or more, if we
want to implement some kind of software fault tolerance).

What the framework must additionally offer is the necessary infrastructure for
statechart execution, message reception and sending and timeout facility.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 34

forEachloop

 : Dispatcher

 : ExternalElement

 : GlobalRepository c : ControlSnapshot activeSts : State prs : PreparedReaction

1 : processEvent

2 : getConfiguration()

3 : c

4 : getActiveStates()

5 : activeSts

6 : getPreparedReactions()
7

<<create>>

8 : prReactions

9 : filterReactions()

10 : pr := getNext()

11 : fireReaction()

Figure 5-7. Preparation and firing reactions upon the reception of an event.

5.5 Programming Model.

Until now emphasis has been placed on classes that form the API of the framework.
This API will enable a Model Driven style of development but, in a transparent way
for the programmer, it will create a reflective architecture of software components.
The abstract class of figure 5-8 will be provided, from which all statechart -based
components will be derived.

StateMachine

<<create>>+StateMachine(executor)
#initStructure()
#initBehaviour()
#adjustStructure(context)
+start()

Figure 5-8. Base class for all statecharts.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 35

initStructure () and initBehaviour () are abstract methods that the developer

must override. The first will serve to define the state hierarchy and the second, to

define the behaviour of each those states. start () is a final method that makes the

component run.

The following Java code snippet shows how the statechart is defined at initialization
time by overloading the pertinent methods.

class NewStatechart extends StateMachine

{

 ….

 protected void initStructure ()

 {

 sRoot = new XorState ("sRoot");

 rootState = sRoot ;

 sIdle = new XorState ("Idle");

 sRoot . addInitialState (sIdle);

 sControlling = new XorState ("Controlling");

 sRoot . addState (sControlling);

 sStandBy = new XorState ("StandBy");

 sStandBy . setTimer (60*1000); //1min

 }

 protected void initBehaviour ()

 {

 storeTask =new MethodInvocation (" storeTask ") ;

 rStoreTask =new SimpleReaction(sControlling ,nu ll ,

 storeTask ," Sto reTask ");

 sRoot. addReaction(EvSetTemperature .class , rS toreTask);

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 36

 }

}

If the statechart control part can be defined at initialization time, this means that can
be done at any moment at run time. Then, the behaviour modifications that have
been mentioned before consist of such method calls. Apart from reaction and state
addition methods, there will also methods for subtracting them.

5.6 Background Elements.

The above mentioned approach, to be effective, must be supplied with something
called dispatcher, a timeout facility and some messaging infrastructure.

The dispatcher is the core of the statechart based component. Having the description
provided by the developer, every time a message/event arrives, the dispatcher must
determine the reactions to be fired. Although in plane state-machines could be a
trivial task, it is not in hierarchical state-machines.

First, the exact transition must be determined. As said before, those transition’s
instances can be different depending on the current set of active states. Besides
that, the proper order of exit and entry actions must be determined and, finally,
multiple reactions can be activated if the statechart contains multiple regions. For
that issue, it is proposed to follow the algorithm described in [19].

Taking into account timing considerations, most model driven approaches take a
platform specific way. Even the UML standard, although having defined the

“TimeEvent ” concept, does not define its use in a standard way. If it is aimed to

change the statechart model at run-time, we must be able to do so with time related
elements.

A feasible approach could be to give to every state the ability to launch a time event,
if some amount of time has been elapsed since its activation. If it’s applied only this
mechanism, this would force the developer to employ more states than employing
platform specific solutions, but the obtained benefit is that we can work with timeout
events at model level. Only the virtual timer of the state of interest has to be
specified and activated and, thus, it is possible to modify them following a generic
approach.

Finally, a messaging infrastructure is needed if those software components will be
aware of the events of interest in their context and notify this environment of
relevant circumstances inside it. The content of the messages will be application-
specific, but each component has to have some element that puts incoming
messages in a buffer for further processing it and sends messages. There could be

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 37

multiple implementations because it will depend on the particular communication
technology: TCP/IP, CORBA, CAN, CANopen, ZigBee, etc.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 38

6. Detailed description of the framework for component
reconfiguration.

This chapter is distributed in two sections: one describing middleware tools as is
OSGi platform and the other one to describe frameworks using model-centric
mechanism for components reconfiguration.

6.1 Middleware tools. OSGi and reconfiguration.

Using OSGi, software components can be installed, updated, or removed on the fly
without ever having to disrupt the operation of the device. The OSGi Service Platform
brings standardized reconfiguration technology to small embedded devices, desktops,
and servers enabling these devices to run continuously, even when their software is
configured, updated, or augmented.

When updating a bundle at reconfiguration the OSGi Framework first stops existing
applications after which their resources are cleaned up. Code is unloaded and
replaced with the updated code. After the code is updated, the bundle is restarted.
This all happens without restarting the JVM.

For the management of OSGi bundles OSGi uses an OSGi repository, new software
(called bundles in OSGi) can be downloaded from repository. Many different kind of
OSGi repository's are available for various kinds of environments.

6.2 A framework for model-centric reconfiguration of statechart
based software-components.

In this section, the proposal of section 5 will be detailed.

The targets of the proposed framework are those software components whose
behaviour is specified by means of statecharts and it will be useful when an
adaptation of the component could be specified as a behaviour-change or, more
precisely, as a statechart-model change. The developer will be supplied with facilities
that permit to launch those behaviour changes at run-time.

In section 6.2.1, the programming model will be presented for software-component
development based on statechart-specification. The presented API is intended to
help the programmer at defining such a component in a Model-Driven style of
programming and to encapsulate the needed patterns and algorithms that
implements UML statechart execution semantic.

Section 6.2.2 will add some requisites to the implementers of framework and, finally,
section 6.2.3 will show the how run-time statechart modification can be effected at-
run time.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 39

6.2.1 Programming Model.

6.2.1.1 Definition of Hierarchical Structure of States.

First of all, the framework must support a Model-Driven style of development.

The developer of a software component under consideration must first supply a class
which methods are the implementation of each guard and action specified in the
statechart. As figure 6-1 shows, all these guards and actions are materialized as
methods of a class.

Executor

+setRepository()

ConcreteExecutor

+guad1()
+action1()

GlobalRepository

+setEvent(e: Event)
+getEvent(): Event

Figure 6-1. Statechart’s guards and actions will be grouped in instances of Executor.

One problem that arises in event processing is parameter passing. Upon the
reception of an event, many guards can be needed to be evaluated and many
actions fired. The event types and the parameters that they can carry are application
dependent. Thus, in order to not impose application dependent issues to the

framework, the globalRepository element depicted, in figure 5-2, maintains the

event instance that the component is processing in each instant. Therefore, if in a
guard or action implementation the developer need to access those parameters, this
global repository must be accessed. This ability is inherited from Executor abstract
class and is what this framework imposes to the developer.

To develop a hierarchical state machine, the developer is supplied with some classes
that permit to define it in a programmatically way.

Figure 6-2 illustrates them showing only the relevant methods (figure 5-5 shows a
more general view and their relations with other concerns). The definition of the
structure of the statechart consists on calling a subset of the methods depicted in

figure 6-2, basically, addRegion , addState , setHistory , setDeepHistory and

addFinalState .

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 40

State

+enter()
+exit()
+setHistory()
+setDeepHistory()
+addEntryAction(Action action)
+addExitAction(Action action)
+addReaction(Class<? extends Event> evClass, Reaction r)

XorState

+addState(State s)
+setEntryState(State s)
+XorState(String sname)
+addFinalState(String sname)
+setInitialIf(String condition, DecisionElement target)

AndState

+AndState(String sname)
+public void addRegion(Region reg)

*

Region

+Region(String rname)
+addState(State s)

1
*

*

Figure 6-2. The API for the definition of the state structure of a statechart.

6.2.1.2 Definition of the Reactions of the Statechart.

Once the statechart’s structure can be defined, there is needed an API for the
definition of the component’s reactions. Generally speaking, a reaction is basically a
transition among states that can be guarded by some conditions, can have multiple
targets or sources and, in the degenerated case, there is no change of state (those
last ones are called internal transitions).

Figure 6-3 details the classes oriented for that issue showing only the methods
intended for the developer.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 41

Reaction

+addAction(Action action)

SimpleReaction

+SimpleReaction(target: State)
+SimpleReaction(target: State, condition: String, action: String)

ForkReaction

+addTarget(State s)
+ForkReaction(DecisionElement source, String condition, Action action, String rname)

JoinReaction

+JoinReaction(DecisionElement target, String condition, Action action, String rname)
+addSource(State s)

Figure 6-3. Classes for de definition of the statechart’s reactions.
A reaction is a property of a “particular” state. As presented before, all state classes

have the addReaction method. In specifying a reaction, we must specify the target

(null if it is an internal transition), a guard identifier (its method name in the executor
class) and possibly a set of actions. The API for those issues is obvious from figure 6-
3.

Every reaction can have an associated action. This holds for state’s entry and exit
actions. The way to specify will be trough action subclasses and, in particular,

MethodInvocation ’s instances. These constitute an indirection to a method of the

executor object. Then, the only thing that the programmer must specify is an
identifier or name of the intended method. This is achieved when creating a reaction

or through the method addAction , figure 5-3.

In some methods of the presented API, it appears the class named

DecisionElement . The reason of its existence can be illustrated in figure 6-4.

The reaction of this statechart in state s1 upon the reception of the event AnEvent
is very variable. The target state depends on the run-time computation of guard1

and gurad2 and also of the last sub-state of s3 we have been in. Apart of that, it
can be appreciated that even if the ultimate target must be a state, at design time,
the end of the transition can be very homogeneous: an state, a shallow history
element, a deep-history, a fork synchronization, a choice point, etc.

Thus, for the sake of uniformly coping with all of them, they must implement the

interface DecisionElement that serves for recursively deciding where does end a

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 42

particular instance of a transition but, anyway, the developer shall only know this
fact but not use it. This is aimed for the internal working of the framework.

s1

s2

s3

s31 s32
H

s31 s32
H

AnEvent [guard1]
[guard2]

[guard3]

Figure 6-4. Transitions’ ends heterogeneity.

6.2.1.3 Creating a Software-Component Based on a Statechart.

The part of the API presented before must be used in a precise order. Figure 6-5
shows from where all statecharts inherit.

StateMachine

#rootState: State

<<create>>+StateMachine(executor)
#initStructure()
#initBehaviour()
#adjustStructure(context)
+start()

Figure 6-5. Base class for creation of statechart-based components.

• initStructure() is an abstract method that the developer must define in a subclass
of StateMachine in order to define the, possibly, hierarchical structure of states.
The only thing that is derived from class is a reference to the root state.

• initBehaviour() is an abstract method where the developer can define the
reactions that may be fired in each state.

• adjustStructure() is a method aimed to be used only by the framework. Here,
depending of the framework need, some computation can be done after the
developer has defined the statechart.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 43

• start() is the method that must be called in order to make the statechart begin
processing events.

Obviously, at state-machine creation, an executor object must be provided.

To illustrate with an example let’s assume that we would like to implement the
statechart of figure. For the sake of simplicity, each transition is labelled with a letter
and even not showed; we will assume that it’s launched after the reception of an

event of type Ev<letter> and it has associated an action named with the name of

the event and numbers of the source and target states.

s0

s1

s11s11

s2

s21

s211

s21

s211s211

C

C

F

F

G

G

EA

D

B B D

H : [cond11] / setCond11

H[cond11]/resetCond11

H/resetCond11

Figura 6-6. A statechart example.

Below is shown the code excerpt that, using the proposed framework, implements
the statechart of figure 6-6 and puts running one instance of it. Of course, the
supplied executor must implement the methods in the statechart definition.

public class ExampleStateMachine extends StateMachine

{

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 44

 protected XorState s1 , s2 , s11 , s21 , s211 ;

 public SmQuantum(Executor executor) throws Exception

 {

 super(executor);

 }

 protected void initStructure()

 {

 XorState root;

 root= new XorState("root");

 rootState =root;

 s1 =new XorState("s1");

 root.addState(s1);

 }

 pprotected void initBehaviour()

 {

 Action actE0_211= new MethodInvocation("evE0_211");

 Reaction rEvE0_211=

 new SimpleReaction(s211 , null,actE0_211, "EvE_211");

 rEvE0_211.addAction(new MethodInvocation("evO"));

 rootState .addReaction(EvE. class,rEvE0_211);

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 45

 Action actEvC1_2= new MethodInvocation("evC1_2");

 Reaction rEvC1_2= new SimpleReaction(s2 , null,actEvC1_2, "EvC1_2");

 s1 .addReaction(EvC. class,rEvC1_2);

 }

 public static void main(String[] args) throws Exception

 {

 SmQuantum sm= new SmQuantum(new ExampleExecutor());

 sm.start();

 }

}

6.2.1.4 Consideration for Guard Evaluation and Action Execution.

Until now, it has been shown the API of a framework for defining a statechart based
software component. Once defined it and put it running, the framework will be
responsible of invoking, when needed, the proper methods of the provided Executor
instance for guard evaluation and action execution.

Many generic approaches can be selected for that issue, depending of the selected
platform and programming language. Remember that the parameter passing

problem has been resolved through the globalRepository element. It temporally

stores the event currently being processed. Then, it rests to determine how to
instrument the invocation of those guard evaluations and action executions. What we
need to take into account is the fact that whatever mechanism being chosen, it
cannot be hardwired in code in order to be possible to change it at run-time.

The most generic approach would be to assign a identifier to each of these methods
and have an entry point to all of them, specifying which of them need to be executed
(similar to operating system calls) but, for the sake of simplicity, assuming that we
have a reflective platform like Java or .NET, we will advocate for using method
names instead.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 46

Using the reflective facilities of those platforms, only a string must be specified and
that is why in the examples and API part presented before, in all reaction
specification, the names of the guards and other methods must be specified.

6.2.2 Internal Elements for Event Processing.

In the previous part we have seen an API for developing statechart-based
components and although it must be done in a programmatic way, it serves as a
description of the statechart-model.

Now, it must be provided an internal infrastructure for event-processing following the
semantic defined in UML. The next algorithm is suitable for this purpose:

1. Wait a message (event).

2. Interrogate all the active states, if some reactions need to be fired.

3. Once collected, launch them in any order (no priority implemented).

A transition, as defined in the UML standard for statecharts, corresponds to a family
of transitions in their flat state-machines. But at run-time, only one transition of this
family must be launched and, thus, the pertinent one must be selected.

Then, the next algorithm can be suitable for such purpose upon the reception of
event ev:

for each active state s

{

 Rection r;

 r=ask s if it has some reaction defined for event ev

 //asking to state s involucrates also its super states

 if(r!=null)

 {

 ask its guards if currently are true

 if so, add this reaction to the set of reaction to be launched

 // this is what is called a PreparedReaction

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 47

 }

}

In hierarchical state machines, launching a reaction is also undefined until run-time.
For example, if the target of a transition has been divided into substates and so on, it
must be determined which one of them must be entered. This circumstance
aggravates if we take into account that initial states can be guarded and that the
target state can have a shallow or deep history substate.

For that issue, the class of figure 6-7 serves for holding the information of each

concrete reaction and has the method markEntryPath () that must be executed

before its launching. It marks all the states that must be entered when the reaction
will be fired.

PreparedReaction

#stateDefinedIn: State
#startingState: State
#action: String

+PreparedReaction(stateDefinedIn: State, startingState: State, action: String)
+getStateDefinedIn(): State
+getStartingState(): State
+isSelfTransition(): boolean
+markEntryPath(): State
+executeAction(executor)

Figure 6-7. Methods of a Reaction to be launched.

And finally, the algorithm to fire a particular reaction (PreparedReaction) must be

the next (it’s expressed in Java but is intended to serve as only an algorithm).

 State sTop, s;

 sTop=pr.markEntryPath();

 if(sTop== null) //enters if pr is an internal transition

 {

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 48

 if(pr.isSelfTransition()) pr.getStateDefinedIn().exit ();

 pr.fireAction(context);

 if(pr.isSelfTransition()) pr.getStateDefinedIn().ente r();

 }

 else

 {

 s=pr.getStartingState();

 if(sTop==pr.getStateDefinedIn()) sTop.exitTillTop();

 else s.exitTill(sTop);

 pr.fireAction(context);

 if(sTop==pr.getStateDefinedIn()) sTop.enterWithoutAct ion();

 else sTop.goMarked();

 }

 }

Some comments must be done about this algorithm:

• It distinguishes between internal, self and the rest of transitions.

• When marking the entry path, the state until which must be exited is
determined.

• Following the UML execution semantic, first exit actions must be fired
beginning from the most nested state upward. Then, the actions associated
with the Reaction must be fired and, finally, entry actions must be executed in
all the marked states beginning from less nested state downward.

This set of algorithms can be implemented in a materialization of the interface of
figure 6-8. A requisite for it is that it must be provided the reference of the

globalRepository element (for example at construction time).

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 49

Dispatcher
<<interface>>

+processEvent(e: Event)
+setExecutor(executor: Executor)

Figure 6-8. Interface for event Processing Classes

The final element of this framework is an event generator. This is the most open
issue, due the differences in nature that can be in events’ sources.

In order to define a generic approach, the statecart will be notified about the
occurrence of the events of interest by means of messages. The framework will
provide a message bugger for a statechart and also a thread for event processing.
How those messages are put in the buffer is an application independent issue and,
thus, left open.

6.2.3 Modifying the Statechart-Model at Run-time.

Now that an API has been shown that, thanks to framework, makes possible to
change at run-time the statechart-model that governs the behaviour of a software
component, it rest to define the mechanism that permits to accomplish it.

First of al, it must be highlighted the ability that this framework gives software
components to modify its behaviour at run-rime but, at least, there are the following
alternatives: to have an externally accessible port through which another element
can give instruction to change its behaviour; another variant of this is to externally
load an element capable of changing the behaviour.

But because of practical reasons, the selected approach is the one illustrated in
figure 6-9.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 50

Figure 6-9. Software components with behaviour modification ability.

Each statechart-based software-component will be supplied with a basic behaviour
and possibly various behaviour modifiers: i.e., having at initialization-time a basic
statechart that governs the component’s behaviour at any moment at run-time, it will
be possible to launch a behaviour modifier. This will change the statechart that
governs the software-component behaviour.

The intended mechanism aims allowing to program statechart modification if, holding
some condition, a particular event is received. The condition will be a guard and the
fact of being in some particular state. The event that launches such modification is
intended to carry the notification of some circumstance variations in the environment
and, thus, the component adapts its behaviour in response to this environmental
change. Note that all different modification is conceived at design time.

What this infrastructure support is to design each different behaviour or working
mode in a separate way: i.e., it offers an adaptation engineering mechanism.

Next, the selected approach to implement this mechanism will be described.

Conceptually, as illustrated in figure 6-10, each state-machine could have various
behaviour-modifiers. Those will be implemented as state-machines’ methods. We
have seen before the ability that this framework offers to define a statechart at
initialization time in a programmatic manner. Thus, it is also possible to effect
statechart modification at any instant at run-time.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 51

StateMachine Modificator*

Figure 6-10. Each state-machine could have various behaviour modifiers.
Now, it rest to define when those modifiers will be launched. Extending the class
diagram of figure 5-3, as shown in figure 6-11, a modifier can be implemented as an
action associated to any reaction. For that issue, it will need the modifier’s identifier.

Action

#actName: String

+execute(context: GlobalRepository)
+getName(): String

MethodInvocation

Modification

#modificatorName: String

<<create>>+Modification(modificatorName: String)
+execute(context: GlobalRepositoryRepository)

Figura 6-11. Modifiers implemented as any actions associated to a statechart.

To illustrate with a simple example, let’s assume an almost empty statechart that
upon the reception of a particular event must become the statechart of figure 6-6.
The next code shows only the methods on charge of defining the statechart at the
initialization time. As it can be seen, the only behaviour implemented is to execute

the method modifier01 () upon the reception of event EvA.

public class ExampleStateMachine extends StateMachine

{

 public void initStructure()

 {

 XorState root;

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 52

 root= new XorState("root");

 rootState =root;

 }

 public void initBehaviour()

 {

 Action m1= new Modification("modifier01");

 Reaction r= new SimpleReaction(null, null,m1, "mod01");

 rootState .addReaction(EvA. class, r);

 }

 public void modifier01() {.....}

}

The method modifier01 () is in charge of modifying the statechart that governs the
behaviour of the component. Its implementation is almost identical to the code
shown in relation to the statechart of figure 6-6.

The framework presented until now offers facilities to add elements to a statechart:
sub-states, regions, reactions, etc., but in order to apply modifiers, it is also
necessary to be able to eliminate those elements.

An immediate implementation of that is to offer an counterpart removeXX () method

for each addXX() method in the state classes and its subclasses, region ,

reaction and its subclasses.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 53

Acknowledgements

The eDIANA Consortium would like to acknowledge the financial support of the
European Commission and National Public Authorities from Spain, Netherlands,
Germany, Finland and Italy under the ARTEMIS Joint Technology Initiative.

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 54

References

[1] Roman Obermaisser, Bernhard Huber: The GENESYS Architecture: A Conceptual
Model for Component-Based Distributed Real-Time Systems. Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, , Volume 5860/2009, in
Software Technologies for Embedded and Ubiquitous Systems, p296-307.

[2] Paolo Costa, Geoff Coulson, Cecilia Mascolo, Luca Mottola, Gian Picco, Stefanos
Zachariadis: Reconfigurable Component-based Middleware for Networked
Embedded Systems, in International Journal of Wireless Information Networks,
Volume 14, Number 2, June 2007, pp. 149-162(14).

[3] Andreas Doblander, Bernhard Rinner, Norbert Trenkwalder, Andreas Zoufal: A
Middleware Framework for Dynamic Reconfiguration and Component
Composition in Embedded Smart Cameras, in WSEAS Transactions on
Computers, 5(3) pages 574-581, WSEAS Press. March 2006.

[4] Bernhard Rinner, Markus Quaritsch: Embedded Middleware for Smart Camera
Networks and Sensor Fusion, in Multi-Camera Networks: Principles and
Applications (July 2009).

[5] Roman Obermaisser, Bernhard Huber: The GENESYS Architecture: A Conceptual
Model for Component-Based Distributed Real-Time Systems. Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, , Volume 5860/2009, in
Software Technologies for Embedded and Ubiquitous Systems, p296-307.

[6] R. Obermaisser, H.Kopetz (editors): GENESYS: A Candidate for an ARTEMIS
Cross-Domain Reference Architecture for Embedded Systems, SpringerVerlag,
2009, ISBN 978-3-8381-1040-0

[7] The INDEXYS project, funded under the ARTEMIS Programme (Topic “SP5
Computing Environments for Embedded Systems”), and coordinated by TTTech
Computertechnik AG, Austria, http://www.indexys.eu/

[8] Marco Castaldi, Antonio Carzaniga, Paola Inverardi, and Alexander L. Wolf, A
Lightweight Infrastructure for Reconfiguring Applications, in Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2649/2003, Software
Configuration Management, 2003, p201-205

[9] J.P.A. Almeida, M. Wegdam, M. van Sinderen, and L. Nieuwenhuis. Transparent
Dynamic Reconfiguration for CORBA. In Proceedings of the 3rd International
Symposium on Distributed Objects and Applications, pages 197–207. IEEE
Computer Society, September 2001.

[10] T. Batista and N. Rodriguez. Dynamic Reconfiguration of Component-Based
Applications. In Proceedings of the International Symposium on Software
Engineering for Parallel and Distributed Systems, pages 32–39. IEEE Computer
Society, June 2000.

[11] J. Berghoff, O. Drobnik, A. Lingnau, and C. Monch. Agent-Based Configuration
Management of Distributed Applications. In Proceedings of the 3rd International

Framework for adaptation through reconfiguration of
components

eDIANA: GA no.: 100012

D2.2-C

January 2010 Page 55

Conference on Configurable Distributed Systems, pages 52–59. IEEE Computer
Society, May 1996.

[12] A. Young and J. Magee. A Flexible Approach to Evolution of Reconfigurable
Systems. In Proceedings of the IEE/IFIP International Workshop on
Configurable Distributed Systems, pages 152–163, March 1992.

[13] M. Endler. A Language for Implementing Generic Dynamic Reconfigurations of
Distributed Programs. In Proceedings of 12th Brazilian Symposium on Computer
Networks, pages 175–187, 1994.

[14] Adler, Rasmus, Schneider, Daniel Trapp, Mario:” Development of Save and
Reliable Embedded Systems Using Dynamic Adaptation”. In: M-ADAPT Model
Driven Software Adaptation, Berlin (2007)

[15] Oscar Nierstrasz, Marcus Denker, and Lucas Reggli. “Model-Centric, Context-
Aware Software Adaptation”. In Software Engineering for Self-Adaptive
Systems, Springer-Verlang 2009.

[16] Pankaj Jalote. “Fault tolerance in distributed systems”. Prentice Hall, 1994.
[17] OMG Unified Modeling Language (UML), Superstructure V2.2, chapter 15, State

Machines, OMG, February 2009
[18] David Harel. Statecharts: “A visual formalism for complex systems”. Science of

Computer Programming, pages 231–274, 1987.
[19] Miro Samek. “Practical statecharts in C/C++”: An introduction to quantum

programming. CMP Books, 2002.

