

eDIANA

Embedded Systems for Energy Efficient Buildings

Grant agreement no.: 100012

Dissemination level

X PU = Public

 PP = Restricted to other programme participants (including the JU)

 RE = Restricted to a group specified by the consortium (including the JU)

 CO = Confidential, only for members of the consortium (including the JU)

D6.2-B Guidelines for automated generation
of scenario to validate UML models against

requirements

Author(s): Goiuria Sagardui MU
 Joseba Andoni Agirre MU
 Lorea Belategui MU
 Leire Etxeberria MU
 Angel Diaz Labein
 Luis Martinez Labein
 Amaia Uriarte Labein
 Azucena Cortes Labein
 Jesús Benedicto ATOS

Issue Date April 2010

Deliverable Number D6.2-B

WP Number WP6

Status Released

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 2

Disclaimer

The information in this document is provided as is and no guarantee or warranty is
given that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

The document reflects only the author‘s views and the Community is not liable for
any use that may be made of the information contained therein.

Document history

V Date Author Description

0.1 15/01/2010 MU ToC

0.2 26/02/2010 Labein Contribution to Introduction and UnitTesting

0.3 26/03/2010 MU Contribution to Introduction, Model based testing,
System Testing and Variability management sections

0.4 22/04/2010 ATOS,
Labein,
MU

Contribution to Traceability (ATOS) and Contribution
to Test Modelling (Labein), first version of summary
and conclusions (MU)

0.5 26/04/2010 MU Addition and correction of some sections

0.6 28/04/2010 Labein Contribution to eDiana Platforms TTCN-3 Compliance

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 3

Summary

The D6.2B Guidelines for automated generation of scenario to validate UML models
against requirements is a document delivered in the context of WP6, Task 6.2: Early
V&V with regard to model based testing in eDIANA.

This document is about Model Based Testing in eDIANA and different dimensions are
considered: The generation of test scenarios using models of the SUT (System Under
Test); test modelling which is concerned with modelling testing structure, test
behaviour and testing artefacts; the traceability between test scenarios and
requirements and variability management in testing.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 4

Contents

SUMMARY ... 3

ABBREVIATIONS .. 6

1. INTRODUCTION ... 8

2. MODEL-BASED TESTING (MBT) ...12

2.1 SOFTWARE TESTING .. 12

2.2 INTRODUCTION TO MODEL-BASED TESTING (MBT)... 13

2.3 BENEFITS OF MODEL BASED TESTING .. 15

2.4 THE PROCESS OF MODEL BASED TESTING ... 15

2.5 TAXONOMY OF MODEL BASED TESTING .. 17

2.6 MODEL BASED TESTING APPROACHES AND TOOLS ... 19

2.7 MODEL-BASED TESTING AND AGILE METHODS ... 20

3. TEST MODELLING ...22

3.1 UML 2.0 TESTING PROFILE (U2TP) ... 24
3.1.1 Test architecture... 25
3.1.2 Test behaviour ... 26
3.1.3 Test data ... 28
3.1.4 Test time ... 30
3.1.5 Test implementation ... 30

3.2 TESTING AND TEST CONTROL NOTATION VERSION 3 (TTCN3) 31
3.2.1 Test Data types .. 32
3.2.2 Actual Test Data ... 33
3.2.3 Test Configuration .. 33
3.2.4 Test Behaviour ... 33
3.2.5 TTCN-3 test system architecture .. 34
3.2.6 eDiana Platforms TTCN-3 Compliance ... 35

3.2.6.1 iEi Interface ... 36
3.2.6.2 C2MCCi Interface ... 37
3.2.6.3 PwGRIDi Interface ... 37

4. GENERATION OF TEST SCENARIOS FROM MODELS39

4.1 UNIT TESTING ... 39

4.2 INTEGRATION AND SYSTEM TESTING .. 42
4.2.1 System Testing Example using Simulink .. 45

5. TRACEABILITY BETWEEN TEST SCENARIOS AND REQUIREMENTS48

5.1 REQUIREMENTS TRACEABILITY ANALYSIS .. 49

5.2 REQUIREMENTS TRACEABILITY TECHNIQUES .. 51

5.3 TEST MANAGEMENT .. 53
5.3.1 HP Quality Center ... 54
5.3.2 HP Quality Center Synchronism .. 54

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 5

6. VARIABILITY MANAGEMENT IN TESTING ...56

6.1 TOOLS FOR MANAGING VARIABILITY ... 59

CONCLUSION ...60

ACKNOWLEDGEMENTS...61

REFERENCES ..61

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 6

Abbreviations

ASN.1 Abstract Syntax Notation One

CORBA Common Object Request Broker Architecture

eDIANA Embedded Systems for Energy Efficient Buildings

EFSM Extended Finite State Machine

ETSI European Telecommunications Standards Institute

FSM Finite State Machine

HP QC HP Quality Center

IDL Interface Definition Language

MDD Model Driven Development

MBT Model-based Testing

OOSD Object Oriented Software Development

PA Platform Adapter

SA SUT Adapter

SDLC Software Development Life Cycle

SUT System Under Test

TE TTCN-3 Executable

TDD Test Driven Development

TCI TTCN-3 Control Interface

TRI TTCN-3 Runtime Interface

TTCN-3 Testing and Test Control Notation version 3

UML Unified Model Language

U2TP UML 2.0 Testing Profile

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 7

XML Extensible Markup Language

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 8

1. Introduction

The rapid growth in processor speed and memory enabled the development of
modeling, simulation, and code-generation tools on the desktop. It also enables
embedded-software developers to increase the functions and complexity of
embedded controllers. This has highlighted the need to move beyond traditional
code-development techniques using text editors and debuggers to center design on
models. This development approach is known as model-based design, and it
streamlines embedded control design with modeling, simulation and automatic-code
generation (see Figure 1-1).

Figure 1-1: Model Based design approach

Working with model-based design means that developers use models to carry out
their designs from the written requirements. These models become an ―executable
specification.‖ The ability to execute the design is a huge benefit for developers or
designers trying to develop and review a specification. Once the high-level model has
been reviewed, it can be embellished with design details in preparation for
translating it into code. Automatic code generation from the detailed design models
greatly streamlines the implementation process and removes the chance of
introducing translation errors going from the design to the code.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 9

Embedded control systems have traditionally followed the V diagram as a
development process. This process leaves all verification and test on the right side of
the V, after design and implementation are complete (see Figure 1-2).

Figure 1-2: V diagram

For a traditional, C-code-based embedded-control-development process, integration
testing often precedes other forms of increasingly high-level testing, such as
hardware-in-the-loop testing and final system test with the actual system under
control.

Although this development sequence has helped organize complex system design, it
does have some drawbacks:

 The sequence does not consider verification and test until the end, when it is
more expensive and time-consuming to fix any errors

 All components must be implemented to test a system

 It fails to account for iteration in a development process.

Model-based design enables new techniques for verification and validation
throughout the development process. Doing test and verification as a parallel activity
along every step of the development process means finding errors at their point of
introduction. It is possible to reiterate, fix, and verify the design faster than in the
traditional V-diagram process (see Figure 1-3). The following sections outline some
best practices for achieving early verification.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 10

Figure 1-3: Early verification and validation through model based design

Model-based design can be considered a part of Model-based Development (MBD)
methodology. MBD is a software development methodology which aims to raise the
abstraction level of system specifications and increase automation in system
development. It uses models at different levels of abstraction for raising the
abstraction level. Automation is achieved by using model transformations: higher-
level models are transformed into lower level models. One kind of model
transformation is code generation. In the context of MBD, Model Based Testing
(MBT) is used to describe all testing activities in the context of MBD. It relates to a
process of test generation based on the model of a System Under Test (SUT) [30].

An introduction of MBT is provided in section 2. MBT is the development of testing
artefacts on the basis of models. In other words, the models provide the primary
information for developing the test cases and test suites, and for checking the final
implementation of a system [3]. It is mainly concerned with deriving testing artefacts
from models.

Related to Model-based and testing, four dimensions are addressed:
 Test modelling in section 3, which is the specification of the structural and

behavioural aspects of the testing software. It is concerned with modelling
testing structure, test behaviour and testing artefacts [3]. Here, it must be

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 11

mentioned UML 2.0 Testing Profile (U2TP), the UML profile that provides a
means to use UML for test specification and modelling.

 The generation of test scenarios using models of the SUT (System Under
Test) in section 4. The generation of test scenarios in different scopes is
addressed: Unit testing, Integration testing and System testing.

 Traceability between test scenarios and requirements in section 5.
 Variability management in testing in section 6

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 12

2. Model-based Testing (MBT)

2.1 Software Testing

Testing is an activity performed for evaluating product quality, and for improving it,
by identifying defects and problems [11]. It is one of the most important phases
during the software development process with regard to quality assurance [30]. It
―can never show the absence of failures‖ [31], but it aims at increasing the
confidence that a system meets its specified behaviour. Testing is an activity
performed for improving the product quality by identifying defects and problems
[30].

Two of the most important dimensions during testing are test goal and test scope
[30].

Test Goal: the software development systems are tested with different purposes.
They can be categorized into:

 Static Test, also called review where specifications, models, source code… are
reviewed or examined without execution to detect errors.

 Dynamic Test, based on execution
o Structural Tests: They cover the structure of the SUT during test

execution. The internal structure of the system must be known (white-
box tests).

o Functional Tests: Functional testing is concerned with assessing the
functional behavior of an SUT against the functional requirements.
They do not require any knowledge about system internals (black-box
tests

o Non-functional Tests: Similar to functional tests, they are performed
against requirements specification of the system for assessing non-
functional requirements such as reliability, load, or performance
requirements.

Test Scope: Test scopes describe the granularity of the SUT. Due to the
composition of the system, tests at different scopes may reveal different failures.
Therefore, they are usually performed in the following order:

 Unit/Component Testing: Unit testing verifies the functioning in isolation of
software pieces which are separately testable. Depending on the context,
these could be the individual subprograms or a larger component made of
tightly related units.

 Integration Testing: Integration testing is the process of verifying the
interaction between software components.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 13

 System Testing: System testing is concerned with the behaviour of a whole
system.

2.2 Introduction to Model-Based Testing (MBT)

Model-based testing (MBT) is a variant of testing that relies on explicit behavior
models that encode the intended behavior of a system and possibly the behavior of
its environment. There are several definitions of model-based testing:

 Model-based testing is the generation of executable black-box tests from a

behavioral model of the SUT (System Under Test) [4].

 Model-based Testing provides a technique for automatic generation of test

cases using models extracted from software artifacts [5].

 Model-based testing is a testing technique where the runtime behavior of an

implementation under test is checked against predictions made by a formal

specification, or model (Colin Campbell, Microsoft Research).

There are also different approaches known as model-based testing [4]:

 Generation of test input data from a domain model

 Generation of test cases from an environment model

 Generation of test cases with oracles from a behavior model

 Generation of test scripts from abstract tests

In terms of model-based testing, the necessity to validate the model implies that the
model must be simpler than the SUT, or at least easier to check, modify and
maintain. Otherwise, the efforts of validating the model would equal the efforts of
validating the SUT (see Figure 2-1).

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 14

Figure 2-1: Model-based testing uses models of the SUT and its environment [9]

The model describing the SUT is usually an abstract, partial presentation of the
system under test's desired behavior. The test cases derived from this model are
functional tests on the same level of abstraction as the model. These test cases are
collectively known as the abstract test suite. The abstract test suite cannot be
directly executed against the system under test because it is on the wrong level of
abstraction. Therefore an executable test suite must be derived from the abstract
test suite that can communicate with the system under test. This is done by mapping
the abstract test cases to concrete test cases suitable for execution [6].

Figure 2-2: Model based testing [6]

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 15

2.3 Benefits of Model Based Testing

Some of the benefits of using Model based testing approaches are the following:
easy test case maintenance: eases the updating of test suites for changed
requirements, reduced costs, shorter schedules, better quality, more test cases:
capability to automatically generate many non-repetitive and useful tests, early bug
detection, time to address bigger test issues, improved tester job satisfaction,
enhanced communication between developers and testers… [7][8]

One of the main reasons for adopting model based testing approaches is the
economical one. Cost-effectiveness of using model based testing compared to
traditional testing is significant (see Figure 2-3).

Figure 2-3: Economics of Model-Based Testing (from [7])

Model-based testing can provide a tremendous increase in testing capability but
adopting model-based testing also requires an inversion and a cultural change.

2.4 The Process of Model Based Testing

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 16

Figure 2-4: The Process of Model based Testing [9]

Model-based testing involves the following major activities [9]: building the model,
defining test selection criteria and transforming them into operational test case
specifications, generating tests, conceiving and setting up the adaptor component
and executing the tests on the SUT.

 Step 1. A model of the SUT is built on the grounds of requirements or existing
specification documents. This model encodes the intended behavior, and it
can reside at various levels of abstraction.

 Step 2. Test selection criteria are defined. In general, test selection criteria
can relate to a given functionality of the system (requirements based test
selection criteria), to the structure of the model (state coverage, transition
coverage, def-use coverage), to stochastic characterizations such as pure
randomness or user profiles, and they can also relate to a well-defined set of
faults.

 Step 3. Test selection criteria are then transformed into test case
specifications. Test case specifications formalize the notion of test selection
criteria and render them operational: given a model and a test case
specification, some automatic test case generator must be capable of deriving
a test suite (see step 4).

 Step 4. Once the model and the test case specification are defined, a test
suite is generated. The set of test cases that satisfy a test case specification

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 17

can be empty. Usually, however, there are many test cases that satisfy it. Test
case generators then tend to pick some at random.

 Step 5. Once the test suite has been generated, the test cases are run.
Running a test case includes two stages.

o Step 5-1. The test model and SUT reside at different levels of
abstraction, and that these different levels must be bridged. Executing
a test case then denotes the activity of applying the concretized input
part of a test case to the SUT and recording the SUT‘s output.
Concretization of the input part of a test case is performed by a
component called the adaptor. The adaptor also takes care of
abstracting the output.

o Step 5-2. A verdict is the result of the comparison of the output of the
SUT with the expected output as provided by the test case. To this end,
the output of the SUT must have been abstracted.

The verdict can take the outcomes pass, fail, and inconclusive. A test passes if
expected and actual outputs conform. It fails if they do not, and it is inconclusive
when this decision cannot be made.

A test script is some executable code that executes a test case, abstracts the output
of the SUT, and then builds the verdict. The adaptor is a concept and not necessarily
a separate software component—it may be integrated within the test scripts.

2.5 Taxonomy of Model Based Testing

In [30], a the taxonomy of model-based testing is presented, this taxonomy is an
enrichment of the taxonomy presented in [9].

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 18

Figure 2-5: A taxonomy of model-based testing [9]

The first dimension is the subject of the model, namely the intended behavior of the
SUT or the possible behavior of the environment of the SUT. The model can describe
the behavior of the SUT or the external environment of the SUT or both.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 19

Redundancy / Independence reflects the source of the test model. The test model
can be a testing-specific model that is built from the specification documents or it
can be generated from another model that is used to generate both test cases and
code.

Model characteristics relate to nondeterminism, to the incorporation of timing issues,
and to the continuous or event-discrete nature of the model.

The fourth dimension is what paradigm and notation are used to describe the model.

The fifth dimension defines the facilities that are used to control the generation of
tests. Accordingly, tools can be classified according to which kinds of test selection
criteria they support.

The sixth dimension is the technology that is used during test generation.

The seventh dimension is about the execution options for the execution of a test.

The eighth and last dimension are concerned with the test evaluation, also called the
test assessment, is the process that exploits the test oracle. It is a mechanism for
analyzing the SUT output and deciding about the test result.

2.6 Model based Testing Approaches and Tools

There are several model based testing approaches that can be applied at different
testing level: system testing, integration testing, regression testing, component
testing, unit testing...

In [10] a survey of model based testing approaches can be found. The approaches
are classified depending on the models that use, the testing level, the level of
automation, the level of complexity, support tools... Although usage and structural
models can be also useful as complement, most of the approaches use behaviour
models for generating test cases such as finite state models or state charts.

There are also several model-based testing tools, in the Table 1 some of the most
known are mentioned.

Table 1: Model-based testing tools
Tool Licensing Modeling Language

Conformiq Test Generator Commercial UML Statecharts

LEIRIOS Test Generator –
LTG/UML

Commercial UML 2.0

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 20

mbt.tigris.org Open source Directed graph

ModelJUnit Open source FSM and EFSM in java

NModel Open source FSM in c#

ParteG Open source State machine

Reactis Commercial Mathlab Simulink Stateflow

SpecExplorer Free Spec#, Asml

Statemate Automatic Test

Generator / Rhapsody ATG

Commercial Statemate statecharts and UML

state machine

TAU Tester Commercial TTCN-3

TestOptimal Commercial, free Community

Edition

State diagram

TTModeler (TTWorkbench) Commercial The UML Testing Profile (UTP)

T-Vec Tester for simulink Commercial Simulink and MATRIXx

ZigmaTEST Commercial Finite state machine (FSM)

The previous tools are specific tools for generating test cases from models. However,
model based testing will happen in a MDD environment where the SUT is modelled
and transformed from higher abstraction models to lower abstraction models. The
generation of test cases can be also understood as a kind of transformation. So more
MDD generic tools that are used for modelling can also be useful such as Eclipse
based tools: Papyrus, TOPCASED, IBM Rational Software Architect, MDDi, etc. as well
as transformation tools such as MOFScript, OAW, ATL and Acceleo.

2.7 Model-Based Testing and Agile Methods

Model-Based Testing can fit into agile processes as Extreme Programming (XP) or
SCRUM.

Test-Driven Development (TDD) is one of the most important testing practices of
agile methods. TDD consists on writing unit tests for a component before writing the
implementation code of the component, then running those tests frequently as the
code is developed and refactored (the test, code, refactor cycle) [4]. TDD is used for
unit testing.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 21

Model-Based Testing can also be used for Unit Testing. MBT offers the possibility of
generating a suite of unit tests from a small model, which may reduce the cost of
developing the unit tests, give deeper understanding of the desired behaviour, and
allow more rapid response to evolving requirements [4].

TDD is one of the approaches that is proposed for unit testing in eDIANA (in section
4.1). And MBT can be performed in TDD way [33] or in a complementary way with
TDD [34].

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 22

3. Test Modelling

In a Model Driven Development approach (see Figure 3-1), the System Under Test
must be modelled using models, those models will be of different levels of
abstraction and transformations will be used from going from one level to another.
Those models will be the input for generating the test cases (this is another kind of
transformation: from SUT model to test model). Those test models must be also
modelled.

Figure 3-1: System Design Models vs. Test Design Models (from [27])

As mentioned previously, one of the most common software development processes
is the well-known V model. This model can be extended for the development of the
test system: it is called W-model [25], see Figure 3-2. As mentioned in introduction,
Model-based design enables new techniques for verification and validation
throughout the development process instead of applying the traditional V-diagram
process. However, the V-model and W-model are used with the purpose of
explaining the role of test modelling in the software development process.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 23

Figure 3-2: The W-model (from [26])

SUT models can be described using different languages and notations. For example
(see Figure 3-3), UML can be used for SUT models, for specifying the test model the
UML testing Profile (UTP) can be used and for execution the TTCN-3 (Testing and
Test Control Notation).

Figure 3-3: UML focused W-model (from [26])

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 24

In this chapter, two of the most used formal test notations for specifying test cases
are described:

 U2TP, UML 2.0 test profile, which provides means to use UML both for system
modelling as well as test case specification.

 TTCN-3, the Testing and Test Control Notation, which is a standardized
language to formulate tests and to control their execution.

3.1 UML 2.0 Testing Profile (U2TP)

Not only is the Unified Modelling Language (UML) one of most used software
development technique, but since its version 2.0 it can also be applied for testing.

U2TP (UML 2.0 Testing Profile) [17] provides the definition of a testing profile to
capture all information that would be needed to specify test goals, test procedures
and test assessments for system components as well as for complete systems.

With U2TP system models and test models can be developed and aligned in all
system development phases. This profile addresses the classic testing concepts such
as test cases, test configuration or test results. Moreover, this testing profile enables:

 Static test definition and test generation based on structural aspects of UML
models

 Dynamic test definition and test generation based on behavioural aspects of
UML models

 The inter-operation with test technologies for black-box testing, where the
internal structure of the SUT remains hidden.

So, these functionalities may be divided in four building blocks:

 Test architecture: Specifying test structure and test configuration.

 Test data: Specifying types and values involved in a test.

 Test behaviour: Specifying test cases and their associated behaviours.

 Test time: Specifying concepts for a time quantified definition of test
procedures.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 25

3.1.1 Test architecture

This aspect specifies test components and classes to provide test configurations. The
concepts needed to describe the elements that the test cases defined using the
profile are shown in the next figure, and are explained below:

 SUT: system under test. The SUT is not specified as part of the test model,
and the test architecture package imports the UML model of the SUT. From
the point of view of black-box testing, internal information is not available for
use in the specification of test cases using the Testing Profile. So, the SUT
provides only a set of operations via publicly available interfaces.

 Test Configuration: This element contains all the test component objects
and their connections to the SUT. It defines both the initial test configuration
and the maximum number of test components objects and connections that
might be added during the test execution.

 Test context: It contains a test configuration and a collection of test cases
being executed on the test configuration. Test components interact with the
SUT to realize the test cases defined in this test context and fulfil the test
objectives.

 Arbiter: It is a predefined interface provided with the Testing Profile. Its
objective is to determine the final verdict for a test case. This determination is
done according to a particular arbitration strategy, which is provided in the
implementation of the arbiter interface. It is a passive component, except for
reporting the test case verdict at the conclusion of each test case. Every test
context must have an implementation of the arbiter interface.

 Scheduler: It is a predefined interface provided with the Testing Profile. Its
objective is to control the execution of the different test components. The
scheduler will keep information about which test components exist at any
point in time, and it will collaborate with the arbiter to inform it when it is time
to issue the final verdict. It keeps control over he creation and destruction of
test components and it knows which test components take part in each test
case. Every test context must have an implementation of a scheduler.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 26

Figure 3-4 U2TP Test architecture

3.1.2 Test behaviour

The area of test behaviour describes the set of concepts required to specify test
behaviours, their objectives, and the evaluation of SUT. It might be described in
different forms, such as sequence diagrams, sequence activity graphs or state
machine

The main elements of test behaviour are:

 Test objective, which describes what should be tested.

 Test case, which is a complete technical specification of how the SUT should
be tested for a given test objective.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 27

Figure 3-5 Main elements of Test Behaviour

Apart from the scope driven by the test objective, the test case must include inputs,
results and test conditions, and it may invoke other test cases. So, it is defined in
terms of sequences, alternatives, loops, data sent to the SUT (stimulus) and data
receive from the SUT (observation).

As UML does not necessarily specify every possible trace of execution, and there is a
need to have complete definitions in the area of testing, the concept of default is
introduced. It is a behaviour triggered by a test observation that is not handled by
the behaviour of the test case per se. Defaults are executed by test components. The
reason for designing with defaults rather than making sure that the main description
is complete, is to separate the most common and normal situations from the more
esoteric and exceptional. The distinction between the main part and the default is up
to the designer and the test strategies.

Moreover, the test case is a property of a test context, so three more concepts
should be included here:

 Test Control: it is a technical specification for the invocation of test cases. Its
objective is to know how the SUT should be tested with the given test
context.

 Test Invocation: a test case can be invoked with specific parameters and
within a specific context. The test invocation leads to the execution of the test
case. The test invocation is denoted in the test log.

 Test Log: Traces from test context and test cases can be recorded as test
logs, becoming part of the test specification.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 28

On other hand, a test case uses an arbiter, described in the previous section, in
order to evaluate the outcome of its test behaviour. The arbiter determines a
verdict. The verdict indicates how has been performed the test case. It must include
at least the following values:

 A pass verdict indicates that the test case is successful and that the SUT has
behaved according to what should be expected.

 A fail verdict shows that the SUT is not behaving according to the
specification.

 An inconclusive verdict means that the test execution cannot determine
whether the SUT performs well or not.

 An error verdict tells that the test system itself and not the SUT fails.

Finally, the Testing Profile has defined a few action utilities to help in the definition of
test behaviour:

 FinishAction completes the test case for one test component. The action has
no implicit effect on other test components involved in the same test case, but
it has recognized the need for other test components to be notified of the
finish such that they may no longer expect messages from the finished test
component. This must be specified explicitly.

 LogAction indicates that information about the test should be recorded for
the test component performing the action.

 determAlt is an interaction operator and is an alternative where the
operands are evaluated in sequence such that it is deterministic which
operand is chosen given the value of the guards, regardless of the fact that
the guard for more than one operand may be true.

3.1.3 Test data

This section contains concepts additional to UML data concepts needed to describe
test data. In other words, test data specifies the types and values sent to or received
from the SUT. It covers:

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 29

 Wildcards: They are literals and denote an omitted value, any value, or any
value or omit. They are typically used for a loose specification of data
exchanged with the SUT.

 Data Partition: It is a stereotyped classifier used to define an equivalence
class for a given type. Its purpose is to provide a more visible differentiation
of data. A data partition must be associated with a data pool.

 Data Pool: It provides a means for associating data sets with test contexts
and test cases. So, a data pool is a classifier containing either data partitions
or explicit values; and can only be associated with a test context or test
components.

 Data Selector: They are operations that performance over the contained
values or value sets. They may be related to a data pool or a data partition in
order to make easier the different data selection strategies.

 Coding Rules: They specify how values are encoded and/or decoded. Coding
rules are shown as strings referencing coding rules defined outside the
Testing Profile such as by ASN.1, CORBA, or XML.

Figure 3-6 Test data

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 30

3.1.4 Test time

As UML time concepts do not fulfil the requirements of a test specification, the U2TP
provides a small set of useful time concepts. The main time concepts are timers and
timezones.

On the one hand, timers are predefined interfaces which cope with manipulate and
control test behaviour, or even assure that a test case terminates successfully. The
timer interface defines operations such as

 ―Start‖ specifies the value to star a timer.

 ―Stop‖ is able to stop an active timer.

 ―Read‖ provides the expiration time of an active timer.

On the other hand, timezones are grouping mechanisms within a distributed test
system. Each test component belongs at most to one timezone. Besides, test
components belonging to the same timezone are considered to be time
synchronized. The time zone of a test component can be accessed both in the model
and in run-time.

3.1.5 Test implementation

Once the building blocks of U2TP have been explained, a test implementation
environment is needed. U2TP provides two mappings towards test execution
environments: JUnit and TTCN-3.

Junit is an open source unit testing framework for the Java programming language.
It has been popular in the development of test-driven development.

http://en.wikipedia.org/wiki/Unit_testing
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Test-driven_development

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 31

Figure 3-7 JUnit framework

TTCN-3 is another standard for test system development, although it is usually
focused to telecommunication and data communication area. It will be detailed in the
following section. The great majority of UML 2.0 Testing Profile specifications can be
represented by TTCN-3 modules and executed on TTCN-3 test platforms as stated in
Model-based testing with UTP and TTCN-3 and its application to HL7 [19].

3.2 Testing and Test Control Notation version 3 (TTCN3)

TTCN-3 (Testing and Test Control Notation version 3) [18] is a strongly typed test
scripting language used in the translation of test specification into an executable
representation. This powerful test specification and implementation language has
been developed by ETSI (European Telecommunications Standards Institute).

It is manly used to define test procedures for black-box testing of distributed
systems, because of the following advantages:

 Because of its well defined syntax, TTCN-3 provides an unambiguous
specification and execution of tests. It enables completely automated test
execution.

 It is easy to learn, because it looks like a regular programming language.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 32

 It is very flexible, it is not tied to particular application, test execution
environment, compiler or operation system.

 It is harmonized with ASN.1, and future developments are supposed to
include XML and IDL.

The TTCN-3 test suite may be divided into these four building blocks, described
below:

 Test Data types

 Actual Test Data

 Test Configuration

 Test Behaviour

3.2.1 Test Data types

TTCN-3 provides attributes for encoding, display or user-defined information. There
are data and signature templates with powerful matching mechanisms, including
regular expression.These data types specify

 Structure of messages or calls and their information elements (fields,
parameters)

 Internal data structures that may be used for several purposes, for instance,
computation

 Possibly encoding or display information

Moreover, it includes the following built-in types:

 Built in basic types such as integer, boolean, float, bitstring, hexstring,
octetstring, charstring or universal charsrting

 Built-in structured types such as record, record of, set, set of, union or
enumerated

 Built-in special types such as component, port, verdict type, or default

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 33

3.2.2 Actual Test Data

Not only data types are provided, but values of actual test data are available during
testing, such as constants or templates for specific message or call parameter values.
It enables using also template decomposition, test suite parameterization and
modification.

Some matching expressions for allowing multiple messages or call parameter values
are included:

 Value range and value list

 Wildcards

 Presence

 Length and size

 Permutation

 Regular expressions

3.2.3 Test Configuration

The test configuration block includes some static aspects related to test component
and port types.

But the interesting aspect of this block is the possibility of dynamic concurrent testing
configurations:

• Dynamic instantiation and management of test components

• Mappings of test components to abstract test system interfaces

• Connections between test component interfaces

• Management of test components

3.2.4 Test Behaviour

TTCN-3 focus only on implementation to be tested and it ensures the control of
complex test configurations. The concept of verdict and verdict resolution mechanism

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 34

is included in the control of Test Case execution and selection mechanisms. The main
aspects of test cases are:

• They specify sending/receiving messages, computation (e.g., checksums), and
verdict assignment and handling

• Decomposition with functions and altsteps

• Reuse of default behaviour

• Use of timers and timeouts

Optionally, test execution control is available, in order to specify order, repetitions or
conditions. Besides, various communication mechanisms are contemplated,
synchronous as well as asynchronous.

3.2.5 TTCN-3 test system architecture

TTCN-3 specifies a test but a test system is needed for test execution. The typical
TTCN-3 test system architecture consists of:

 TTCN-3 Executable (TE): execution core that runs test cases. This compiler
and execution environment is general for every system.

 TTCN-3 Runtime Interface (TRI).

 SUT Adapter (SA): implementing TRI SA interface that is responsible for
network interface code.

 Platform Adapter (PA): implementing TRI PA interface that is responsible for
timers and external functions.

 TTCN-3 Control Interface (TCI) between Test System Executor and Test
Management.

 TTCN-3 Test Management including Test Control, Logging and Coding and
Decoding.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 35

Figure 3-8 TTCN-3 typical architecture

3.2.6 eDiana Platforms TTCN-3 Compliance

As introduced in previous chapters TTCN-3 testing protocol is focused in automation
and quality assurance compliant communications environments. The eDiana
platform, covering a very heterogeneous device integration process, is a perfect case
in which the TTCN-3 standard could be fully applicable.

The reference architecture describes all the communication interfaces present in the
whole eDiana platform.

The picture below, extracted from the eDiana Reference architecture, summarizes
the most relevant components and their communication interfaces.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 36

Figure 6 eDiana Platform Communication Interfaces

The most relevant interfaces in the eDiana platform regarding to the specific eDiana
developments are:

 iEi Interface

 c2MCCi Interface

 PwGRIDi Interface

3.2.6.1 iEi Interface

The iEi interface is the generic interface among the Cell level concentrator and the
field devices. The full functionalities for the iEi interface are described in WP03 which
in charge of the development of the cell level and its components.

The mapping among the iEi interface to test and the TTCN-3 standard suggested
testing architecture main components would be:

 SUT: The field device including the iEi interface.

EDP

eDiana Platform

iEi

c2MCCi

WWWi PwGRIDi

MCC

Macro Cell Concentrator

CDC

Cell Device Concentrator

CGS

Cell Generation and Storage
CCA

Cell Control and Actuation

CMM

Cell Monitoring and Metering

Local Environment

External Environment

iEi iEi

CUI

Cell User Interface

FS

Fiscal Meter

MUI

MCC User Interface

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 37

 TTCN-3 Executable: Main executable developed to act as the cell level
concentrator and communicating with the field devices.

 SUT Adapter (SA): Communication layer or API to be used by the TTCN-3
Executable.

 Platform Adapter (PA): Run time engine developed to act as communication
scheduler.

3.2.6.2 C2MCCi Interface

The c2MCCi interface is the generic interface among the Cell level concentrator and
the Macrocell. The full functionalities for the c2MCCi interface are described in WP04
data gathering component.

The mapping among the c2MCCi interface to test and the TTCN-3 standard
suggested testing architecture main components would be:

 SUT: The hardware device acting as Cell level concentrator.

 TTCN-3 Executable: Main executable developed to act as the Macrocell level
concentrator and communicating with the cell concentrator devices.

 SUT Adapter (SA): Communication layer or API to be used by the TTCN-3
Executable.

 Platform Adapter (PA): Run time engine developed to act as communication
scheduler.

To test the interface in its fully operation the reverse approach would have to be
done, this is, the SUT would be the Macrocell level and the TTCN-3 executable would
simulate the Cell level layer behavior.

3.2.6.3 PwGRIDi Interface

The PwGRID interface is the generic interface among the Macrocell level
concentrator and the power grid domain. The full functionalities for the PwGRID
interface are described in WP04 data gathering component.

The mapping among the PwGRID interface to test and the TTCN-3 standard
suggested testing architecture main components would be:

 SUT: The hardware device acting as MacroCell level concentrator.

 TTCN-3 Executable: Main executable developed to act as the Power Grid
domain.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 38

 SUT Adapter (SA): Communication layer or API to be used by the TTCN-3
Executable.

 Platform Adapter (PA): Run time engine developed to act as communication
scheduler.

The TTCN-3 layer and eDiana components mapping, in the current document, has
been done only for illustrative purpose. More detailed approach could be done, for
the above mentioned three interfaces, but it is out of the scope of the present
document.

The Verification and Validation mechanisms to adopt by the eDiana platform will
described in the verification and validation procedures.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 39

4. Generation of test scenarios from models

In this section, the generation of test scenarios from models for different test scopes
is addressed.

As mentioned in section 2, software testing can be performed at different
levels/scopes along the development: Unit Testing (the target of the test is a single
module), Integration testing (the target of the test is a group of modules) and
System testing (the target of the test is the whole system) [11].

 Unit Testing: Unit testing verifies the functioning in isolation of software
pieces which are separately testable. Depending on the context, these could
be the individual subprograms or a larger component made of tightly related
units.

 Integration Testing: Integration testing is the process of verifying the
interaction between software components.

 System Testing: System testing is concerned with the behaviour of a whole
system.

4.1 Unit testing

The Unit Testing is lowest testing level regarding to functional complexity involved,
due to it is focused in testing individual functionalities and no the integration or
interaction among them.

Before go into the details of subject topic, it is convenient to discuss a little about
software engineering, SDLC (Software Development Life Cycle) and OOSD (Object
Oriented Software Development)[1][2].

SDCL, also known as ―Macro Process‖, shall be divided into different phases logically
and carefully. These SDLC phases broadly include:

 Vision – Conceptualization of the software domain;

 Define – Detailing the requirements along with specification – Use cases;

 Design – Realization of the Use Cases;

 Develop – Realization of the design leads to software development / Coding;

 Test – Enforcing the use cases while Testing.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 40

The iterative and incremental behaviour of the software process is reflected in the
following picture.

Figure 4-1: Phases of SDCL

In the OOSD (Object Oriented Software Development) or Object Oriented Paradigm,
when analyzing a problem domain or analyzing requirements, actually is looking for
objects/abstractions that will solve some particular problem in the software. To
introduce the usage of MDD or TDD regarding to the different Early V&V processes
under the eDiana project domain, both will be discussed in the OOSD.

The first approach for MDD is to take into account the following division:

 objects/abstractions will be names/nouns

 behaviour will be represented by verbs/actions.

Next step is fill the gaps of how the abstraction will look like, and go deeper in
analyzing the requirements, and come up with some handful of use cases. Those
actually give an idea of functional aspects of the objects, or provide interfaces, called
object contracts.

So, the outcome of the use cases are the interfaces, provide the means of testing the
contracts. This practice along with scenarios leads to find interactions between
objects, in order to design the solution. This process leads a static design which
shows how the interfaces, and then the concrete implementations, would look like
and what the interdependencies among those objects are.

This approach was bottom up: it is necessary to find the objects, then the
components and then the domains. During this categorization process, some new
and unknown areas appear. Those areas come across right in the beginning of the
objects / components discovery and we‘ll realize that we might have incomplete

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 41

picture of the design. It will become much more obvious when we discover the rest
of the domains.

At this point then, Test Driven Development (TDD) approach becomes feasible and
reasonable to consider for Early V&V process.

TDD, also known as Agile Process or RAD Process, is both Iterative and Incremental.
As stated before, the unit testing is the lowest testing level. Under this domain, the
TDD becomes the strategy to follow to face the Early V&V process in conjunction
with the development. It does not replace traditional testing, instead it defines a
proven way to ensure effective unit testing: instead of writing functional code first
and then testing the code as an afterthought, development staking a TDD approach
refuses to write a new function until a failed test exists for it

The steps of TDD are overviewed in the UML activity diagram shown below. The first
step is to quickly add a test, basically just enough code to fail, run tests, then, and
update the functional code to make it pass the new tests.

Figure 4-2: TDD steps

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 42

It is important to integrate model based testing with development processes and to
reuse models from the design processes where possible. The facilities provided by
UML are ideally placed to capture functional requirements. Tests generated from low
level models can work directly on the implementation, such as JUnit or NUnit.
However, the tests must be expressed in terms of implementation detail. The
essential idea of model based testing is to compare an abstract specification to a
concrete implementation. Tests generated from models that describe high-level
functional requirements and associated information structures change much more
slowly than design models.

The information content of a system is often expressed as UML class models. Given a
relationship between the information model (logical system view) and the
implementation (physical system view) then the information model can be used to
generate individual operation tests in terms of the correct changes to the information
states expressed as pairs of snapshots.

Furthermore, given behavioural models, such as state machines, it is possible to
construct tests in terms of sequences of operations and the required information
states. Sequences of snapshots produced by operations in this way will be referred to
as filmstrips.

The unit testing modelling for the eDiana platform based on the technique of the
filmstrips relaying on the TDD methodology, is foreseen as the most quality
assurance compliant and flexible way to face the platform development in a
collaborative development scenario in which the development, testing and
deployment task are very loosely coupled.

4.2 Integration and System testing

Unit testing focuses on testing a unit of the code whereas Integration testing is the
next level of testing, it focuses on testing the integration of units of code or
components and System testing is concerned with the behaviour of a whole system.

Integration testing is also known as integration and testing (I&T). Classical
integration testing strategies, such as top-down or bottom-up, are used with
traditional, hierarchically structured software. Modern systematic integration
strategies are rather architecture-driven, which implies integrating the software
components or subsystems based on identified functional threads. Integration testing
is a continuous activity. Except for small, simple software, systematic, incremental
integration testing strategies are usually preferred to putting all the components
together at once, which is pictorially called ―big bang‖ testing [11].

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 43

In embedded systems, software can be deployed in a complex real environment. And
to test the software in this real environment can be very expensive. Moreover, early
validation of a part or the whole system is necessary in order to detect problems as
soon as possible and before the final deployment.

This is the case of eDiana, where each of the eDiana installations (at houses, flats,
offices) will involve different devices, configurations and software.

Simulation using simulators or emulators of real-world devices can allow early
software validation. Simulink [12], developed by The MathWorks, is a commercial
tool for multidomain simulation and Model-Based Design for dynamic and embedded
systems. It must be mentioned the existing synergy among tool suppliers in
embedded system sector, which forms a ―de facto‖ standard that is very used:
Matlab/Simulink-dSPACE-Autosar [28]. A similar tools combination is described at
[29], mentioning among others:

 Matlab‘s Simulink and Stateflow (http://www.matlab.com) for designing the
system ant its components.

 DSpace‘s TargetLink (http://www.dspace.com) used for reusing and automatic
code generation from Matlab models.

 Tessy (of Hitex supplier) used for automated unit testing.

 CTE (Classification Tree Editor, Hitex) for configuring testing based on the
system‘s input domain.

 Time Partition Testing, for generating test cases with continuous data flows.

 DSpace‘s MTest for automatic generation of test cases from Simulink and
TargetLink (http://www.dspace.com) models.

 QA-C/Misra can be used for analyzing the resultant C code
(http://www.qasystems.de).

 PolySpace, tool that can detect potential errors in run-time during compilation
time (http://www.polyspace.de)

 Mercury‘s Quality Center, which is a global set of tools for assuring the quality
of software (http://www.mercury.com/).

The model-based development process of embedded systems usually occurs on at
least three different levels. First a model of the system is built. It simulates the
required system behavior and usually represents an abstraction of the system. When
the model is revealed to be correct, code is generated from the model. This is the
software level. Eventually, hardware including the software is the product of the
development [30]. The multiple V-model [32], based on the traditional V-Model,
takes this phenomenon into account. In the multiple V-model, each specification

http://www.matlab.com/
http://www.dspace.com/
http://www.dspace.com/
http://www.qasystems.de/
http://www.polyspace.de/
http://www.mercury.com/

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 44

level (e.g., model, software, final product) follows a complete V-development cycle,
including design, build, and test activities (see Figure 4-3).

Figure 4-3: The multiple V-model

Related to those different levels, different test platforms are required [30]:

 Model-in-the-Loop (MiL): The first integration level, MiL, is based on the
model of the system itself. In this platform the SUT is a functional model or
implementation model that is tested. Model exists entirely in native simulation
tool (e.g., Simulink / Stateflow). The test purpose is basically functional
testing in early development phases in simulation environments.

 Software-in-the-Loop (SiL): During SiL the SUT is software tested. The
software components under test are usually implemented in C and are either
hand-written or generated by code generators based on implementation
models. Part of the model exists in native simulation tool (e.g., Simulink /
Stateflow), and part as executable C-code (e.g., S-function). The test purpose
in SiL is mainly functional testing.

 Processor-in-the-Loop (PiL): In PiL embedded controllers are integrated into
embedded devices with proprietary hardware (i.e., ECU). Testing on PiL level
is similar to SiL tests, but the embedded software runs on a target board with
the target processor or on a target processor emulator. It is the last
integration level which allows debugging during tests in a cheap and
manageable way.

 Hardware-in-the-Loop (HiL): When testing the embedded system on HiL level
the software runs on the final ECU. However the environment around the ECU
is still a simulated one.

 System: Finally, the last integration level is obviously the system itself.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 45

4.2.1 System Testing Example using Simulink

Using Simulink it is possible to validate the software before deploying it in its real
environment. With Simulink it is possible to create and model block diagrams of the
system. These blocks can be mechanical/physical/hardware elements (devices) or
software that is embedded in a block, so simulation model include the simulation of
both mechanicals and hardware elements or devices and software that manages
these elements.

For being able to perform system validation (at simulation level), the following
phases are performed:

1. Generate the input (test cases) for the simulation

2. Create the simulation model (.mdl).

3. Simulate and analyze the results

1. Generation of test cases

The ModelJUnit [16] tool can be used. It is an open source tool, it allows time
annotations, it uses a transition-Based notation (FSM) and it has test generation
algorithms for random generation (random walk) and metrics for structural coverage.
And it can be used for online and offline testing.

ModelJUnit is a java library that extends JUnit to support Model Based Testing.
ModelJUnit allows writing simple finite state machine (FSM) models or extended finite
state machine (EFSM) that can take into account time aspects (TimedFsmModel).

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 46

Figure 4-4: Test generation process

The steps for generating test/simulation sequences for simulink are the next ones
(see Figure 4-4):

1. Define EFSM model of the behaviour of the SUT starting from the system
specification. This model reflects the behaviour of the system at high level; it
is an abstraction (a simplified view) of the underlying SUT.

a. The transitions in this model can be signal driven (as it is an embedded
system).

b. Time annotations and timeouts that trigger transitions must be needed.
So TimedFsmModel can be used and timeouts specified.

For obtaining the behaviour model (EFSM) at high abstraction level, the
specification models of the software (state machine models) can be the basis
and starting from them, the models are abstracted and simplified in order to
represent the behaviour of the systems (including transitions triggered by
signals).

2. The greedyTester algorithm can be selected and applied to generate test
sequences offline. This algorithm tests a system by making greedy walks
through an EFSM model of the system. A greedy random walk gives
preference to transitions that have never been taken before. Once all

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 47

transitions out of a state have been taken, it behaves the same as a random
walk. This way, high transition coverage is obtained. Metrics for coverage may
be also obtained.

3. Code must be added to write .mat file with signal values from the generated
test sequence messages. This way, the input for simulink simulation scenario
is obtained.

2. Create the simulation model (.mdl)

For creating the simulation model: both software and devices must be considered:

 Software-Under-Test is transformed into SFunction blocks to integrate in the

simulation model

 And the blocks that simulate the devices are modelled.

3. Simulate and analyze the results

The execution of simulation and analysis can be manual or automatic. For performing
automatic testing, it is necessary to create an oracle that provides a reference
output, for checking test results, in a given test, and accordingly produces a verdict
of ―pass‖ or ―fail‖ [11].

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 48

5. Traceability between test scenarios and requirements

Taking into account the definition of the ―requirements traceability‖ term [35],
onefold:

Requirements traceability refers to the ability to describe and follow the life of a
requirement, in both a forwards and backwards direction (i.e., from its origins,
through its development and specification, to its subsequent deployment and use,
and through periods of on-going refinement and iteration in any of these phases)

The requirements traceability offers a clear vision of how high-level requirements,
objectives, goals and the stakeholder‘s needs, are transformed into low-level
requirements and furthermore, how the relationships within the other related
information layers are foreseen [21][23][24].

Requirements traceability might cover the following constrains:

 Ensure traceability for each level of decomposition performed on the project.
In particular:

o Ensure that every low level requirement can be traced to a high level
requirement or original source

o Ensure that every design, implementation, and test element can be
traced into a requirement

o Ensure that every requirement is represented in design and
implementation

o Ensure that every requirement is represented in testing/verification

 Ensure that traceability is used in conducting impact assessments of
requirements changes on project plans or activities.

 Be maintained and updated whenever changes occur.

 Be consulted during the preparation of Impact Assessments for every
proposed change to the project

 Be maintained as an electronic document

Traceability relationships are usually many-to-many, that is, one low-level
requirement may be linked to several high-level requirements and vice versa [23].

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 49

Figure 5.1. depicts the assurance that the above constrains mentioned are covered.

Figure 5-1: Requirements traceability

5.1 Requirements Traceability analysis

Three types of analysis are covered in function of the requirements changes or to
follow-up the relationship within the other layers [23]:

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 50

 Impact Analysis, this kind of analysis is used to determine what others
artefacts might be affected if a selected artefact changes.

 Derivation Analysis, this analysis works in opposite direction to impact
analysis, getting a low level artefact as requisite, design element or test, the
traceability links are used to determine what higher level requirements have
given rise to it.

 Coverage analysis, can be used to determine that all requirements do trace
downwards to lower layers and across to tests, if it does not exist trace in it
should be an indicator that probably the requisite will not be meet.

Figure 5-2: Requirements traceability analysis

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 51

5.2 Requirements Traceability techniques

A lot of requirement traceability techniques are identified, many of them within the
research scope and other implemented in the industrial sector:

 Value Based Requirement Traceability (VBRT)

 Feature Oriented Requirements Tracing (FORT)

 Pre-RS Requirements Tracing

 Event Based Traceability (EBT)

 Information Retrieval (IR)

 Rule Based (RB) Approach

 Hyper-text Based Approach (HB)

 Feature-Model Based Approach (FB)

 Scenario-Based Approach (SB)

 Process Centered Environments

 Design Patterns

 Traceability Matrices

 Keywords and Ontology

 Aspect Weaving

 Goal Centric Traceability (GCT)

 Analysis

All of them could be classified into two types based on two key aspects of
traceability.

1. Techniques facilitating pre-RS traceability.

This type includes those traceability techniques which help to describe the life of
requirements when they are not included in the requirements specification.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 52

2. Techniques facilitating post-RS traceability.

This type includes those techniques which help to trace the life of requirements when
they are included in the requirements specification and forward. The techniques
supporting post-RS traceability are subdivided in three types: those who favouring
traceability of functional requirements, techniques favouring non-functional
requirements and finally techniques that favouring both, functional and non-
functional requirements. The latter is most suitable to the eDIANA features, because
support traceability of both functional and non-functional requirements. The
techniques included in this category of the above mentioned are EBT, IR, Hyper text
based approach, Feature model based approach, Scenario based traceability, Process
centric environment, Matrices and Aspect weaving.

The two techniques selected in eDIANA are:

 Scenario-Based Approach (SB), with this technique scenarios are used to
model system functionality and to generate functional test cases. Scenarios-
based test cases create a mapping between requirements and other artefacts
like design and code. The traceability is established by mapping scenarios with
the design elements. Scenarios are created to trace only the interesting cases
therefore they might not provide complete coverage. [20]

 Traceability Matrices, this technique are commonly used in industry to define
relationships between requirements document and other type of artefacts
[20]. The other artefacts include design modules, code modules and test
cases. In traceability matrices the links are manually created between
requirements and other artefacts.

Currently different products are in the market as RETRO, DesignTrack, TRAM,
Scenario Advisor Tool, DOORS or ARTS.

Nevertheless the tool used currently in eDiana for requisite management is Rational
RequisitePro, which is a requirements management tool developed by IBM that
provides support to save software requirements specification (SRS) document, link
requirements to use case diagrams, and test cases. When change to requirements
occur Rational RequisitePro identifies the corresponding software artefacts that are
affected. But the most important feature in this context is that also provides
traceability support for the requirements.

Requisite Pro offer the possibility to display and manage the requirements, their
attributes, and their relationships with other requirements in views, and this
information should present in a table/matrix or in an outline tree. In eDIANA Project

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 53

would have to be created several views to show up the relationships among
requirements.

Two different views are allowed when using RequisitePro:

 Attribute Matrix, type of view that lets view all the requirements of a particular
type, which allows sort and prioritize the requirements.

 Traceability Matrix, reflects the relationships between two different types of
requirements. A traceability matrix view will be used to create, modify, and
delete traceability relationships so that requirements can be traced throughout
the development life cycle. The Traceability Matrix view will allow the display
of both direct and indirect traceability relationships between two types of
requirements or requirements of the same type. A traceability relationship is
direct when it traces from one requirement to another. A traceability
relationship is indirect when a requirement traces to an intermediate
requirement, which in turn traces to another requirement.

Figure 5-3: Direct and Indirect Relationships

Then RequisitePro tool will be used in order to create the Systems Requirements
Traceability Matrix.

5.3 Test Management

To ensure the Quality of the system, and verify that all the requisites are covered, a
test management tool called HP Quality Center [22] will be used in eDIANA. This
tool has a total integration within RequisitePro. And the integration is focused in the
synchronization of the requirements between both tools.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 54

5.3.1 HP Quality Center

HP Quality Center, is a web based Test management tool, composed by five main
modules for management of testing processes.

Even though just three modules will be used in eDIANA:

 ―Requirements‖, which is used for requirements management and
requirements traceability through test cases stored in the HP-QC repository.

 ―Test Plan‖, which is used for creating or updating different Test Cases. The
Test Cases are contained in different folders which are displayed in a tree like
structure. It can store both Manual as well as automated test cases. Manual
Test Cases can be written locally or imported from Excel Sheets. With each
'Test Step' having Expected Result and ActualResult section. QC supports
automated script developed for different Automation Tools like QTP,
LoadRunner, WinRunner etc. These scripts can be saved directly from the Tool
into the Test Plan tab of QC. However, prior to this, appropriate QC Add-in
needs to be installed to support an Automation Tool.

 ―Test Lab‖, this module is for execution of the test cases stored in the Test
Plan module which can be imported locally to the Test Lab screen and Run.
When Manual Test case is executed, it opens up a pop up listing all the Test
Steps and the user is supposed to update status of each step with Passed,
Failed or Not Complete. When automated test case is run, QC invokes the
Automation Tool which in turn executes the script and stores back the result
into QC repository and displays on the UI.

With HP Quality Center it is possible link and trace requirements to one another to
highlight dependency relationships and verify that no requirements are inadvertently
overlooked during the development and testing process.

5.3.2 HP Quality Center Synchronism

The synchronism is the way to have the test references inside the Requirement
Environment or to import the requirements inside HP Quality Center so that we can
manage the tests and their results inside HP Quality Center. The following figure
show how the synchronism works.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 55

Figure 5-4: Requirements sync HP QC with RequisitePro

The only aspect that we need to have into account is how mapping the fields
between RequisitePro and HP QC. For default the following rules apply:

 The Synchroniser maps the content of free text field

 In case of list value fields, it maps the value from Requisite Pro with the ones
in HP QC

Figure 5-5: HP QC Mapping rules

To summarize, three steps are needed to synchronize the requirements and manage
all the lifecycle of the requirements:

1. Sync RequisitePro with HP QC.

2. Define tests Plan. Should cover all the test specifications.

3. Verify the test plans in the test Lab.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 56

6. Variability management in testing

In most of the systems, there are different configurations that impact on testing; this
section will present an approach to manage the variability in testing context. This is
the case of eDiana, where installations can differ very much one from another: the
number and type of devices can be different: some devices will be present in some
installations but not in others, the communication protocols can be different, the
number of cells and macrocell can differ, etc.

For validating it is also necessary to consider this variability and possible scenarios.
To validate a software with multiple validation context is like a validation product
line.

In order to identify and model the environments/contexts in which software should
be validated, a feature model can be used. One of the most adequate model for
representing variability among products.

A feature model is an and/or tree of different features. A feature as ―a prominent or
distinctive and user-visible aspect, quality, or characteristic of a software system or
systems‖ [14]. Feature modelling was first proposed as part of the FODA (Feature
Oriented Domain Analysis) method [14]. Features can be mandatory, optional or
alternative. And composition rules are used to define the semantics existing between
features that are not expressed in the feature diagram: Mutual dependency
(Requires) and mutual exclusion (Mutex-with) relationships. Features are an effective
way of identifying the variability (and the communality) among different products in
a domain. Moreover, they are a natural and intuitive way of expressing the variability
[13]; feature model plays a central role, not only in the development of the reusable
assets, but also in the management and configuration of multiple products in a
domain.

For validating or testing software in different contexts or environments, the feature
model helps to identify the variability in the execution context. In eDIANA
installations the feature model of validation is the following one:

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 57

Figure 6-1: eDiana validation feature model

In this feature model, we can see that it is necessary to consider different validation
context depending on the number and type of devices and protocols that will be
included in an installation.

 Different number of cells

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 58

 Different number and type of devices in a cell

 Different physical interfaces

To validate the software at system level, it is necessary to manage the variability of
the context. This variability impacts on the next aspects:

 Variability in Software-Under-Test.

 Variability in the validation environment.

 Variability en testing scenarios.

To be able to validate the software in an appropriate way, it is necessary to manage
variability in those three aspects, in order to be able to validate the software in
different contexts. Each of the aspects is described below.

Variability in the Software under test

The embedded software can be developed following different development
paradigms in order to be adaptable and has variability.

One option can be to use a software product line engineering approach. Using this
paradigm each product or configuration will only have the specific software that
needs.

Another option is to use a configurable product. In this case, an unique software is
developed but this software is able to run in every configuration. This is the case of
eDIANA, the software that will be installed in the installations is the same but it will
be configured according to the devices of the installation. For validating this
software, it is necessary to configure it for being able to analyze the answer of the
software in the different situation under it can be run.

Variability in the validation environment

The embedded software often runs under different configurations. It can be
connected to a different number of devices, run under different processors... It is
necessary to manage this variability to be able to create the adequate environment
to validate/test each of the configuration of the software.

In the validation environment, the variability can come from:

 Number and type of sensors

 Number and type of actuators

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 59

 Communication mechanisms

 Processors

If we are using Simulink model to test the system, variability can be introduced in
Simulink models in relations and blocks that are required for simulation. Simulation
elements can also be contained in a library and be connected automatically in order
to create the simulation model for a concrete installation.

Variability in the testing scenarios

Not all the configurations or installations have the same requirements regarding
testing. Depending on the configuration, some functionalities may be no active or
change slightly. For this reason, variability must also be considered in the testing
sequences or test cases.

6.1 Tools for managing variability

To be able to manage variability in all these aspects is necessary to have tool
support. Pure::variants is a commercial tool for managing variability and developing
software product lines that have a Simulink plug-in [15] that allows to create and
maintain reusable models with Simulink. It provides variability management for
Simulink. It allows to maintain and configure all model variants within a single master
model structure by feature selection in pure::variants.

Figure 6-2: Pure::variants for Simulink

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 60

Conclusion

In this deliverable, model based testing approach and its application in eDIANA has
been analyzed. An introduction to Model based testing: benefits, process, taxonomy,
approaches and tools has been provided. And the generation of test scenarios in
eDIANA project has been addressed for Unit testing using the Test Driven
Development (TDD) approach and for early system testing via simulations.

For modelling test related artefacts, U2TP (UML 2.0 Testing Profile) and TTCN-3
(Testing and Test Control Notation version 3) has been studied.

Traceability between test scenarios and requirements in eDIANA has been also
addressed using the tool RequisitePro for managing requirements and HP Quality
Center for test management. As well as, variability management of the different
configurations of eDIANA that can affect testing.

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 61

Acknowledgements

The eDIANA Consortium would like to acknowledge the financial support of the
European Commission and National Public Authorities from Spain, Netherlands,
Germany, Finland and Italy under the ARTEMIS Joint Technology Initiative.

References

[1] Booch, Brady. Object-Oriented Analysis and Design with Applications. Addison-
Wesley, 2007.

[2] de Champeaux, Dennis; Lea, Douglas; Faure, Penelope. Object-Oriented System
Development. Addison-Wesley, 1993

[3] Hans-Gerhard Gross, Component-Based Software Testing with UML, Springer,
2005

[4] M. Utting, B.Legeard, Practical Model-Based Testing: A Tools Approach, Morgan-
Kaufmann 2007.

[5] A.C. Dias, R. Subramanyan, M. Vieira, G. H. Travassos, A Survey on Model-based
Testing Approaches: A systematic Review, Proceedings of the 1st ACM
international workshop on Empirical assessment of software engineering
languages and technologies held in conjunction with the 22nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), 2007, pp
31-36

[6] Model-based Testing, http://en.wikipedia.org/wiki/Model-based_testing
[7] Harry Robinson (Google), Model-Based Testing tutorial, STARWEST - Software

Quality Engineering - Software Testing, 2006
[8] Software Acquisition Gold Practice: Model-Based Testing,

http://www.goldpractices.com/practices/mbt/, 2010
[9] M. Utting, A. Pretschner, B. Legeard, A taxonomy of Model-Based Testing,

Technical report 04/2006, Department of Computer Science, University of
Waikato, April, 2006.

[10] Arilo C. Dias Neto, Rajesh Subramanyan, Marlon Vieira, Guilherme H.
Travassos, A survey on model-based testing approaches: a systematic review,
Proceedings of the 1st ACM international workshop on Empirical assessment of
software engineering languages and technologies: held in conjunction with the
22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE), 31-36, 2007

[11] A. Bertolino. Software Testing. In SWEBOK: Guide to the Software
Engineering Body of Knowledge, IEEE

http://www.goldpractices.com/practices/mbt/

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 62

[12] Simulink, http://www.mathworks.com/products/simulink/
[13] Kwanwoo Lee, Kyo Chul Kang, and Jaejoon Lee. Concepts and guidelines of

feature modeling for product line software engineering. In ICSR-7: Proceedings of
the 7th International Conference on Software Reuse, pages 62–77, London, UK,
2002. Springer-Verlag.

[14] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical Report CMU/SEI-90-TR-21,
November 1990.

[15] Pure::variants for Simulink. http://www.pure-
systems.com/pure_variants_for_Simulink.164.0.html

[16] ModelJUnit webpage, http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/,
2009

[17] UML Testing Profile, version 1.0. Object Management Group, July 2005.

[18] TTCN-3 Homepage: http://www.ttcn-3.org/

[19] Pietsch, Stephan; Stanca-Kaposta, Bogdan. Model-based testing with UTP and
TTCN-3 and its application to HL7. Testing Technologies IST GmbH, 2008

[20] J.Cleland-Huang, ―Toward Improved Traceability of Non-Functional
Requirements‖, Proceedings of the 3rd international workshop on Traceability in
emerging forms of software engineering TEFSE‗05, ACM, 2005, pp. 14-19.

[21] Wiegers, Karl E., ―Software Requirements‖, Second Edition, Microsoft Press,
2003

[22] HP Quality Center, http://h50281.www5.hp.com/software/index.html
[23] Prof. Elizabeth Hull, Prof. Ken Jackson, Dr Jeremy Dick , ―Requirements

Engineering― 2004, Springer, ISBN 1852338792
[24] Daryl Kulak, Eamonn Guiney, "Use Cases: Requirements in Context, Second

Edition", 2003, Addison Wesley, ISBN 0-321-15498-3
[25] A. Spillner: The W-Model Strengthening the Bond Between Development and

Test. Orlando, 2002
[26] Paul Baker, Zhen Ru Dai, Jens Grabowski, Øystein Haugen, Ina

Schieferdecker, Clay Williams, Model-Driven Testing: Using the UML Testing
Profile, Springer, 2008

[27] Z. Dai, Model-Driven Testing with UML 2.0, in Proc. of the 2nd European
Workshop on Model Driven Architecture, 2004

[28] Sandmann, G., Thompson, R., 2008. Development of AUTOSAR Software
Components within Model-Based Design. The Mathworks

[29] Ridderhof, Gross, Doerr, 2007. Establishing Evidence for Safety Cases in
Automotive Systems. Report TUD-SERG-2007-008. Delft University of Technology.

[30] Justyna Zander-Nowicka, Model-based Testing of Real-Time Embedded
Systems in the Automotive Domain, phD Thesis, Technischen Universität Berlin,
Berlin, 2009

[31] Dijkstra, E. W.: Notes on Structured Programming. In Structured
Programming, Volume 8 of A.P.I.C. Studies in Data Processing, Part 1, Editor:
Hoare C. A. R., Pages: 1 – 82. Academic Press, London/New York, 1972.

http://www.mathworks.com/products/simulink/
http://www.pure-systems.com/pure_variants_for_Simulink.164.0.html
http://www.pure-systems.com/pure_variants_for_Simulink.164.0.html
http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/
http://www.ttcn-3.org/
http://h50281.www5.hp.com/software/index.html

Guidelines for automated generation of scenario to validate
UML models against requirements

eDIANA: GA no.: 100012

D6.2-B

April 2010 Page 63

[32] Brökman, B., Notenboom, E.: Testing Embedded Software. ISBN: 978-0-3211-
5986-1. Addison-Wesley International, 2002.

[33] Olli-Pekka Puolitaival, Adapting model-based testing to agile context, VTT
PUBLICATIONS 694

[34] Sebastian Wieczorek, Alin Stefanescu, Mathias Fritzsche, Joachim Schnitter,
Enhancing Test Driven Development with Model Based Testing and Performance
Analysis, Proceedings of the Testing: Academic & Industrial Conference - Practice
and Research Techniques table of contents, pp 82-86, IEEE Computer Society,
2008

[35] O. Gotel, A. Finkelstein, ―Extended Requirements Traceability: Results of an
Industrial Case Study‖, Proceedings of the Third IEEE International Symposium
on Requirements Engineering, IEEE, 1997, pp.169-178.

